Loading…
Plastic Deformation Modes of CuZr/Cu Multilayers
We synthesized CuZr/Cu multilayers and performed nanoindentation testing to explore the dependence of plastic deformation modes on the thickness of CuZr layers. The Cu layers were 18 nm thick and the CuZr layers varied in thickness from 4 nm to 100 nm. We observed continuous plastic co-deformation i...
Saved in:
Published in: | Scientific reports 2016-03, Vol.6 (1), p.23306-23306, Article 23306 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We synthesized CuZr/Cu multilayers and performed nanoindentation testing to explore the dependence of plastic deformation modes on the thickness of CuZr layers. The Cu layers were 18 nm thick and the CuZr layers varied in thickness from 4 nm to 100 nm. We observed continuous plastic co-deformation in the 4 nm and 10 nm CuZr − 18 nm Cu multilayers and plastic-induced shear instability in thick CuZr layers (>20 nm). The plastic co-deformation is ascribed to the nucleation and interaction of shear transformation zones in CuZr layers at the adjacent interfaces, while the shear instability is associated with the nucleation and propagation of shear bands in CuZr layers. Shear bands are initialized in the CuZr layers due to the accumulated glide dislocations along CuZr-Cu interfaces and propagate into adjacent Cu layers via slips on {111} plane non-parallel to the interface. Due to crystallographic constraint of the Cu layers, shear bands are approximately parallel to {111} plane in the Cu layer. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep23306 |