Loading…

Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy

Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause "hidden hearing loss" that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear h...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2016-03, Vol.36 (13), p.3755-3764
Main Authors: Mehraei, Golbarg, Hickox, Ann E, Bharadwaj, Hari M, Goldberg, Hannah, Verhulst, Sarah, Liberman, M Charles, Shinn-Cunningham, Barbara G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c566t-a08c7dafff55707b4fe827612fafde7b2c81a250e8deee59a3fb88ba5827a4a83
cites cdi_FETCH-LOGICAL-c566t-a08c7dafff55707b4fe827612fafde7b2c81a250e8deee59a3fb88ba5827a4a83
container_end_page 3764
container_issue 13
container_start_page 3755
container_title The Journal of neuroscience
container_volume 36
creator Mehraei, Golbarg
Hickox, Ann E
Bharadwaj, Hari M
Goldberg, Hannah
Verhulst, Sarah
Liberman, M Charles
Shinn-Cunningham, Barbara G
description Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause "hidden hearing loss" that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear hair cells and auditory nerve fibers; however, there is no clinical test of this synaptopathy in humans. In animals, synaptopathy reduces the amplitude of auditory brainstem response (ABR) wave-I. Unfortunately, ABR wave-I is difficult to measure in humans, limiting its clinical use. Here, using analogous measurements in humans and mice, we show that the effect of masking noise on the latency of the more robust ABR wave-V mirrors changes in ABR wave-I amplitude. Furthermore, in our human cohort, the effect of noise on wave-V latency predicts perceptual temporal sensitivity. Our results suggest that measures of the effects of noise on ABR wave-V latency can be used to diagnose cochlear synaptopathy in humans. Although there are suspicions that cochlear synaptopathy affects humans with normal hearing thresholds, no one has yet reported a clinical measure that is a reliable marker of such loss. By combining human and animal data, we demonstrate that the latency of auditory brainstem response wave-V in noise reflects auditory nerve loss. This is the first study of human listeners with normal hearing thresholds that links individual differences observed in behavior and auditory brainstem response timing to cochlear synaptopathy. These results can guide development of a clinical test to reveal this previously unknown form of noise-induced hearing loss in humans.
doi_str_mv 10.1523/jneurosci.4460-15.2016
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4812134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787964426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-a08c7dafff55707b4fe827612fafde7b2c81a250e8deee59a3fb88ba5827a4a83</originalsourceid><addsrcrecordid>eNpVUU1v1DAQtRCILoW_UPnIJYvtOHb2glRWBYqWVrT0bE2cMeuStYOdIOXf41VLBaeR3teM5hFyxtmaN6J-dx9wTjFbv5ZSsYo3a8G4ekZWhd1UQjL-nKyY0KxSUssT8irne8aYZly_JCcFr5lWbEW-nc-9n2Ja6IcEPuQJD_QG8xhDRrqDCYNdqA_0KvoCQKZAv0L6iYlGR7fR7geERG-XAOMUR5j2y2vywsGQ8c3jPCV3Hy--bz9Xu-tPl9vzXWUbpaYKWGt1D865ptFMd9JhK7TiwoHrUXfCthxEw7DtEbHZQO26tu2gKSqQ0Nan5P1D7jh3B-wthinBYMbkD5AWE8Gb_5ng9-ZH_G1kywWvZQl4-xiQ4q8Z82QOPlscBggY52y4bvVGSSlUkaoHqS0_zwnd0xrOzLEP8-Xq4u7m-nZ7aY59FMwc-yjGs3-PfLL9LaD-A6Ktiv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787964426</pqid></control><display><type>article</type><title>Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy</title><source>PubMed Central</source><creator>Mehraei, Golbarg ; Hickox, Ann E ; Bharadwaj, Hari M ; Goldberg, Hannah ; Verhulst, Sarah ; Liberman, M Charles ; Shinn-Cunningham, Barbara G</creator><creatorcontrib>Mehraei, Golbarg ; Hickox, Ann E ; Bharadwaj, Hari M ; Goldberg, Hannah ; Verhulst, Sarah ; Liberman, M Charles ; Shinn-Cunningham, Barbara G</creatorcontrib><description>Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause "hidden hearing loss" that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear hair cells and auditory nerve fibers; however, there is no clinical test of this synaptopathy in humans. In animals, synaptopathy reduces the amplitude of auditory brainstem response (ABR) wave-I. Unfortunately, ABR wave-I is difficult to measure in humans, limiting its clinical use. Here, using analogous measurements in humans and mice, we show that the effect of masking noise on the latency of the more robust ABR wave-V mirrors changes in ABR wave-I amplitude. Furthermore, in our human cohort, the effect of noise on wave-V latency predicts perceptual temporal sensitivity. Our results suggest that measures of the effects of noise on ABR wave-V latency can be used to diagnose cochlear synaptopathy in humans. Although there are suspicions that cochlear synaptopathy affects humans with normal hearing thresholds, no one has yet reported a clinical measure that is a reliable marker of such loss. By combining human and animal data, we demonstrate that the latency of auditory brainstem response wave-V in noise reflects auditory nerve loss. This is the first study of human listeners with normal hearing thresholds that links individual differences observed in behavior and auditory brainstem response timing to cochlear synaptopathy. These results can guide development of a clinical test to reveal this previously unknown form of noise-induced hearing loss in humans.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.4460-15.2016</identifier><identifier>PMID: 27030760</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Acoustic Stimulation ; Adult ; Animals ; Auditory Perception - physiology ; Auditory Threshold - physiology ; Disease Models, Animal ; Ear, Inner - pathology ; Electroencephalography ; Evoked Potentials, Auditory, Brain Stem - physiology ; Female ; Hearing Loss, Noise-Induced - pathology ; Hearing Loss, Noise-Induced - physiopathology ; Humans ; Male ; Mice ; Noise ; Otoacoustic Emissions, Spontaneous - physiology ; Reaction Time - physiology ; Synapses - pathology ; Young Adult</subject><ispartof>The Journal of neuroscience, 2016-03, Vol.36 (13), p.3755-3764</ispartof><rights>Copyright © 2016 the authors 0270-6474/16/363755-10$15.00/0.</rights><rights>Copyright © 2016 the authors 0270-6474/16/363755-10$15.00/0 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-a08c7dafff55707b4fe827612fafde7b2c81a250e8deee59a3fb88ba5827a4a83</citedby><cites>FETCH-LOGICAL-c566t-a08c7dafff55707b4fe827612fafde7b2c81a250e8deee59a3fb88ba5827a4a83</cites><orcidid>0000-0003-1033-9887 ; 0000-0002-5096-5914 ; 0000-0002-0389-8632 ; 0000-0001-8685-9630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812134/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812134/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27030760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehraei, Golbarg</creatorcontrib><creatorcontrib>Hickox, Ann E</creatorcontrib><creatorcontrib>Bharadwaj, Hari M</creatorcontrib><creatorcontrib>Goldberg, Hannah</creatorcontrib><creatorcontrib>Verhulst, Sarah</creatorcontrib><creatorcontrib>Liberman, M Charles</creatorcontrib><creatorcontrib>Shinn-Cunningham, Barbara G</creatorcontrib><title>Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause "hidden hearing loss" that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear hair cells and auditory nerve fibers; however, there is no clinical test of this synaptopathy in humans. In animals, synaptopathy reduces the amplitude of auditory brainstem response (ABR) wave-I. Unfortunately, ABR wave-I is difficult to measure in humans, limiting its clinical use. Here, using analogous measurements in humans and mice, we show that the effect of masking noise on the latency of the more robust ABR wave-V mirrors changes in ABR wave-I amplitude. Furthermore, in our human cohort, the effect of noise on wave-V latency predicts perceptual temporal sensitivity. Our results suggest that measures of the effects of noise on ABR wave-V latency can be used to diagnose cochlear synaptopathy in humans. Although there are suspicions that cochlear synaptopathy affects humans with normal hearing thresholds, no one has yet reported a clinical measure that is a reliable marker of such loss. By combining human and animal data, we demonstrate that the latency of auditory brainstem response wave-V in noise reflects auditory nerve loss. This is the first study of human listeners with normal hearing thresholds that links individual differences observed in behavior and auditory brainstem response timing to cochlear synaptopathy. These results can guide development of a clinical test to reveal this previously unknown form of noise-induced hearing loss in humans.</description><subject>Acoustic Stimulation</subject><subject>Adult</subject><subject>Animals</subject><subject>Auditory Perception - physiology</subject><subject>Auditory Threshold - physiology</subject><subject>Disease Models, Animal</subject><subject>Ear, Inner - pathology</subject><subject>Electroencephalography</subject><subject>Evoked Potentials, Auditory, Brain Stem - physiology</subject><subject>Female</subject><subject>Hearing Loss, Noise-Induced - pathology</subject><subject>Hearing Loss, Noise-Induced - physiopathology</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Noise</subject><subject>Otoacoustic Emissions, Spontaneous - physiology</subject><subject>Reaction Time - physiology</subject><subject>Synapses - pathology</subject><subject>Young Adult</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVUU1v1DAQtRCILoW_UPnIJYvtOHb2glRWBYqWVrT0bE2cMeuStYOdIOXf41VLBaeR3teM5hFyxtmaN6J-dx9wTjFbv5ZSsYo3a8G4ekZWhd1UQjL-nKyY0KxSUssT8irne8aYZly_JCcFr5lWbEW-nc-9n2Ja6IcEPuQJD_QG8xhDRrqDCYNdqA_0KvoCQKZAv0L6iYlGR7fR7geERG-XAOMUR5j2y2vywsGQ8c3jPCV3Hy--bz9Xu-tPl9vzXWUbpaYKWGt1D865ptFMd9JhK7TiwoHrUXfCthxEw7DtEbHZQO26tu2gKSqQ0Nan5P1D7jh3B-wthinBYMbkD5AWE8Gb_5ng9-ZH_G1kywWvZQl4-xiQ4q8Z82QOPlscBggY52y4bvVGSSlUkaoHqS0_zwnd0xrOzLEP8-Xq4u7m-nZ7aY59FMwc-yjGs3-PfLL9LaD-A6Ktiv4</recordid><startdate>20160330</startdate><enddate>20160330</enddate><creator>Mehraei, Golbarg</creator><creator>Hickox, Ann E</creator><creator>Bharadwaj, Hari M</creator><creator>Goldberg, Hannah</creator><creator>Verhulst, Sarah</creator><creator>Liberman, M Charles</creator><creator>Shinn-Cunningham, Barbara G</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1033-9887</orcidid><orcidid>https://orcid.org/0000-0002-5096-5914</orcidid><orcidid>https://orcid.org/0000-0002-0389-8632</orcidid><orcidid>https://orcid.org/0000-0001-8685-9630</orcidid></search><sort><creationdate>20160330</creationdate><title>Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy</title><author>Mehraei, Golbarg ; Hickox, Ann E ; Bharadwaj, Hari M ; Goldberg, Hannah ; Verhulst, Sarah ; Liberman, M Charles ; Shinn-Cunningham, Barbara G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-a08c7dafff55707b4fe827612fafde7b2c81a250e8deee59a3fb88ba5827a4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustic Stimulation</topic><topic>Adult</topic><topic>Animals</topic><topic>Auditory Perception - physiology</topic><topic>Auditory Threshold - physiology</topic><topic>Disease Models, Animal</topic><topic>Ear, Inner - pathology</topic><topic>Electroencephalography</topic><topic>Evoked Potentials, Auditory, Brain Stem - physiology</topic><topic>Female</topic><topic>Hearing Loss, Noise-Induced - pathology</topic><topic>Hearing Loss, Noise-Induced - physiopathology</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Noise</topic><topic>Otoacoustic Emissions, Spontaneous - physiology</topic><topic>Reaction Time - physiology</topic><topic>Synapses - pathology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehraei, Golbarg</creatorcontrib><creatorcontrib>Hickox, Ann E</creatorcontrib><creatorcontrib>Bharadwaj, Hari M</creatorcontrib><creatorcontrib>Goldberg, Hannah</creatorcontrib><creatorcontrib>Verhulst, Sarah</creatorcontrib><creatorcontrib>Liberman, M Charles</creatorcontrib><creatorcontrib>Shinn-Cunningham, Barbara G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehraei, Golbarg</au><au>Hickox, Ann E</au><au>Bharadwaj, Hari M</au><au>Goldberg, Hannah</au><au>Verhulst, Sarah</au><au>Liberman, M Charles</au><au>Shinn-Cunningham, Barbara G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2016-03-30</date><risdate>2016</risdate><volume>36</volume><issue>13</issue><spage>3755</spage><epage>3764</epage><pages>3755-3764</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause "hidden hearing loss" that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear hair cells and auditory nerve fibers; however, there is no clinical test of this synaptopathy in humans. In animals, synaptopathy reduces the amplitude of auditory brainstem response (ABR) wave-I. Unfortunately, ABR wave-I is difficult to measure in humans, limiting its clinical use. Here, using analogous measurements in humans and mice, we show that the effect of masking noise on the latency of the more robust ABR wave-V mirrors changes in ABR wave-I amplitude. Furthermore, in our human cohort, the effect of noise on wave-V latency predicts perceptual temporal sensitivity. Our results suggest that measures of the effects of noise on ABR wave-V latency can be used to diagnose cochlear synaptopathy in humans. Although there are suspicions that cochlear synaptopathy affects humans with normal hearing thresholds, no one has yet reported a clinical measure that is a reliable marker of such loss. By combining human and animal data, we demonstrate that the latency of auditory brainstem response wave-V in noise reflects auditory nerve loss. This is the first study of human listeners with normal hearing thresholds that links individual differences observed in behavior and auditory brainstem response timing to cochlear synaptopathy. These results can guide development of a clinical test to reveal this previously unknown form of noise-induced hearing loss in humans.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>27030760</pmid><doi>10.1523/jneurosci.4460-15.2016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1033-9887</orcidid><orcidid>https://orcid.org/0000-0002-5096-5914</orcidid><orcidid>https://orcid.org/0000-0002-0389-8632</orcidid><orcidid>https://orcid.org/0000-0001-8685-9630</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2016-03, Vol.36 (13), p.3755-3764
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4812134
source PubMed Central
subjects Acoustic Stimulation
Adult
Animals
Auditory Perception - physiology
Auditory Threshold - physiology
Disease Models, Animal
Ear, Inner - pathology
Electroencephalography
Evoked Potentials, Auditory, Brain Stem - physiology
Female
Hearing Loss, Noise-Induced - pathology
Hearing Loss, Noise-Induced - physiopathology
Humans
Male
Mice
Noise
Otoacoustic Emissions, Spontaneous - physiology
Reaction Time - physiology
Synapses - pathology
Young Adult
title Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auditory%20Brainstem%20Response%20Latency%20in%20Noise%20as%20a%20Marker%20of%20Cochlear%20Synaptopathy&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Mehraei,%20Golbarg&rft.date=2016-03-30&rft.volume=36&rft.issue=13&rft.spage=3755&rft.epage=3764&rft.pages=3755-3764&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.4460-15.2016&rft_dat=%3Cproquest_pubme%3E1787964426%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-a08c7dafff55707b4fe827612fafde7b2c81a250e8deee59a3fb88ba5827a4a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787964426&rft_id=info:pmid/27030760&rfr_iscdi=true