Loading…
An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client
Tandem affinity purification–mass spectrometry (TAP-MS) is a popular strategy for the identification of protein–protein interactions, characterization of protein complexes, and entire networks. Its employment in cellular settings best fitting the relevant physiology is limited by convenient expressi...
Saved in:
Published in: | Molecular & cellular proteomics 2016-03, Vol.15 (3), p.1139-1150 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tandem affinity purification–mass spectrometry (TAP-MS) is a popular strategy for the identification of protein–protein interactions, characterization of protein complexes, and entire networks. Its employment in cellular settings best fitting the relevant physiology is limited by convenient expression vector systems. We developed an easy-to-handle, inducible, dually selectable retroviral expression vector allowing dose- and time-dependent control of bait proteins bearing the efficient streptavidin-hemagglutinin (SH)-tag at their N- or C termini. Concomitant expression of a reporter fluorophore allows to monitor bait-expressing cells by flow cytometry or microscopy and enables high-throughput phenotypic assays. We used the system to successfully characterize the interactome of the neuroblastoma RAS viral oncogene homolog (NRAS) Gly12Asp (G12D) mutant and exploited the advantage of reporter fluorophore expression by tracking cytokine-independent cell growth using flow cytometry. Moreover, we tested the feasibility of studying cytotoxicity-mediating proteins with the vector system on the cell death-inducing mixed lineage kinase domain-like protein (MLKL) Ser358Asp (S358D) mutant. Interaction proteomics analysis of MLKL Ser358Asp (S358D) identified heat shock protein 90 (HSP90) as a high-confidence interacting protein. Further phenotypic characterization established MLKL as a novel HSP90 client. In summary, this novel inducible expression system enables SH-tag-based interaction studies in the cell line proficient for the respective phenotypic or signaling context and constitutes a valuable tool for experimental approaches requiring inducible or traceable protein expression. |
---|---|
ISSN: | 1535-9476 1535-9484 |
DOI: | 10.1074/mcp.O115.055350 |