Loading…

Phase transitions via selective elemental vacancy engineering in complex oxide thin films

Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a c...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-04, Vol.6 (1), p.23649-23649, Article 23649
Main Authors: Lee, Sang A., Jeong, Hoidong, Woo, Sungmin, Hwang, Jae-Yeol, Choi, Si-Young, Kim, Sung-Dae, Choi, Minseok, Roh, Seulki, Yu, Hosung, Hwang, Jungseek, Kim, Sung Wng, Choi, Woo Seok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-36fcb303a0c7a05471a652aacf388b0040cee7f326d1a81ea3a71ab31bc5fc123
cites cdi_FETCH-LOGICAL-c504t-36fcb303a0c7a05471a652aacf388b0040cee7f326d1a81ea3a71ab31bc5fc123
container_end_page 23649
container_issue 1
container_start_page 23649
container_title Scientific reports
container_volume 6
creator Lee, Sang A.
Jeong, Hoidong
Woo, Sungmin
Hwang, Jae-Yeol
Choi, Si-Young
Kim, Sung-Dae
Choi, Minseok
Roh, Seulki
Yu, Hosung
Hwang, Jungseek
Kim, Sung Wng
Choi, Woo Seok
description Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO 3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films.
doi_str_mv 10.1038/srep23649
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4817049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898678741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-36fcb303a0c7a05471a652aacf388b0040cee7f326d1a81ea3a71ab31bc5fc123</originalsourceid><addsrcrecordid>eNplkV1LHDEUhkNpqaJe9A9IwJtWWJuvmWRuCiL1A4T2or3oVTiTPbMbmUnGZHbRf29kdVlrbnLIeXjPm_MS8oWzM86k-Z4TjkLWqvlA9gVT1UxIIT7u1HvkKOc7Vk4lGsWbz2RPaCal5maf_Pu9hIx0ShCyn3wMma490Iw9usmvkZZiwDBBT9fgILhHimHhA2LyYUF9oC4OY48PND74eRFalqfO90M-JJ866DMevdwH5O_lzz8X17PbX1c3F-e3M1cxNc1k3blWMgnMaWCV0hzqSgC4ThrTMqaYQ9SdFPWcg-EIEgrSSt66qnNcyAPyY6M7rtoB566YTdDbMfkB0qON4O3bTvBLu4hrqwzXTDVF4OuLQIr3K8yTHXx22PcQMK6y5VobzXRT64Ke_IfexVUK5XuWm8bUBVS8UN82lEsxl3i6rRnO7HNmdptZYY933W_J14QKcLoB8vi8cUw7I9-pPQFLQqIn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898678741</pqid></control><display><type>article</type><title>Phase transitions via selective elemental vacancy engineering in complex oxide thin films</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lee, Sang A. ; Jeong, Hoidong ; Woo, Sungmin ; Hwang, Jae-Yeol ; Choi, Si-Young ; Kim, Sung-Dae ; Choi, Minseok ; Roh, Seulki ; Yu, Hosung ; Hwang, Jungseek ; Kim, Sung Wng ; Choi, Woo Seok</creator><creatorcontrib>Lee, Sang A. ; Jeong, Hoidong ; Woo, Sungmin ; Hwang, Jae-Yeol ; Choi, Si-Young ; Kim, Sung-Dae ; Choi, Minseok ; Roh, Seulki ; Yu, Hosung ; Hwang, Jungseek ; Kim, Sung Wng ; Choi, Woo Seok</creatorcontrib><description>Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO 3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep23649</identifier><identifier>PMID: 27033718</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/766/119/2795 ; Engineering ; Humanities and Social Sciences ; multidisciplinary ; Oxides ; Phase transitions ; Science ; Science (multidisciplinary) ; Thin films</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.23649-23649, Article 23649</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-36fcb303a0c7a05471a652aacf388b0040cee7f326d1a81ea3a71ab31bc5fc123</citedby><cites>FETCH-LOGICAL-c504t-36fcb303a0c7a05471a652aacf388b0040cee7f326d1a81ea3a71ab31bc5fc123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898678741/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898678741?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27033718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sang A.</creatorcontrib><creatorcontrib>Jeong, Hoidong</creatorcontrib><creatorcontrib>Woo, Sungmin</creatorcontrib><creatorcontrib>Hwang, Jae-Yeol</creatorcontrib><creatorcontrib>Choi, Si-Young</creatorcontrib><creatorcontrib>Kim, Sung-Dae</creatorcontrib><creatorcontrib>Choi, Minseok</creatorcontrib><creatorcontrib>Roh, Seulki</creatorcontrib><creatorcontrib>Yu, Hosung</creatorcontrib><creatorcontrib>Hwang, Jungseek</creatorcontrib><creatorcontrib>Kim, Sung Wng</creatorcontrib><creatorcontrib>Choi, Woo Seok</creatorcontrib><title>Phase transitions via selective elemental vacancy engineering in complex oxide thin films</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO 3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films.</description><subject>639/301/119/995</subject><subject>639/766/119/2795</subject><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Oxides</subject><subject>Phase transitions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thin films</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1LHDEUhkNpqaJe9A9IwJtWWJuvmWRuCiL1A4T2or3oVTiTPbMbmUnGZHbRf29kdVlrbnLIeXjPm_MS8oWzM86k-Z4TjkLWqvlA9gVT1UxIIT7u1HvkKOc7Vk4lGsWbz2RPaCal5maf_Pu9hIx0ShCyn3wMma490Iw9usmvkZZiwDBBT9fgILhHimHhA2LyYUF9oC4OY48PND74eRFalqfO90M-JJ866DMevdwH5O_lzz8X17PbX1c3F-e3M1cxNc1k3blWMgnMaWCV0hzqSgC4ThrTMqaYQ9SdFPWcg-EIEgrSSt66qnNcyAPyY6M7rtoB566YTdDbMfkB0qON4O3bTvBLu4hrqwzXTDVF4OuLQIr3K8yTHXx22PcQMK6y5VobzXRT64Ke_IfexVUK5XuWm8bUBVS8UN82lEsxl3i6rRnO7HNmdptZYY933W_J14QKcLoB8vi8cUw7I9-pPQFLQqIn</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Lee, Sang A.</creator><creator>Jeong, Hoidong</creator><creator>Woo, Sungmin</creator><creator>Hwang, Jae-Yeol</creator><creator>Choi, Si-Young</creator><creator>Kim, Sung-Dae</creator><creator>Choi, Minseok</creator><creator>Roh, Seulki</creator><creator>Yu, Hosung</creator><creator>Hwang, Jungseek</creator><creator>Kim, Sung Wng</creator><creator>Choi, Woo Seok</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160401</creationdate><title>Phase transitions via selective elemental vacancy engineering in complex oxide thin films</title><author>Lee, Sang A. ; Jeong, Hoidong ; Woo, Sungmin ; Hwang, Jae-Yeol ; Choi, Si-Young ; Kim, Sung-Dae ; Choi, Minseok ; Roh, Seulki ; Yu, Hosung ; Hwang, Jungseek ; Kim, Sung Wng ; Choi, Woo Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-36fcb303a0c7a05471a652aacf388b0040cee7f326d1a81ea3a71ab31bc5fc123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/119/995</topic><topic>639/766/119/2795</topic><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Oxides</topic><topic>Phase transitions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang A.</creatorcontrib><creatorcontrib>Jeong, Hoidong</creatorcontrib><creatorcontrib>Woo, Sungmin</creatorcontrib><creatorcontrib>Hwang, Jae-Yeol</creatorcontrib><creatorcontrib>Choi, Si-Young</creatorcontrib><creatorcontrib>Kim, Sung-Dae</creatorcontrib><creatorcontrib>Choi, Minseok</creatorcontrib><creatorcontrib>Roh, Seulki</creatorcontrib><creatorcontrib>Yu, Hosung</creatorcontrib><creatorcontrib>Hwang, Jungseek</creatorcontrib><creatorcontrib>Kim, Sung Wng</creatorcontrib><creatorcontrib>Choi, Woo Seok</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang A.</au><au>Jeong, Hoidong</au><au>Woo, Sungmin</au><au>Hwang, Jae-Yeol</au><au>Choi, Si-Young</au><au>Kim, Sung-Dae</au><au>Choi, Minseok</au><au>Roh, Seulki</au><au>Yu, Hosung</au><au>Hwang, Jungseek</au><au>Kim, Sung Wng</au><au>Choi, Woo Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase transitions via selective elemental vacancy engineering in complex oxide thin films</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>23649</spage><epage>23649</epage><pages>23649-23649</pages><artnum>23649</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO 3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27033718</pmid><doi>10.1038/srep23649</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-04, Vol.6 (1), p.23649-23649, Article 23649
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4817049
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/119/995
639/766/119/2795
Engineering
Humanities and Social Sciences
multidisciplinary
Oxides
Phase transitions
Science
Science (multidisciplinary)
Thin films
title Phase transitions via selective elemental vacancy engineering in complex oxide thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20transitions%20via%20selective%20elemental%20vacancy%20engineering%20in%20complex%20oxide%20thin%20films&rft.jtitle=Scientific%20reports&rft.au=Lee,%20Sang%20A.&rft.date=2016-04-01&rft.volume=6&rft.issue=1&rft.spage=23649&rft.epage=23649&rft.pages=23649-23649&rft.artnum=23649&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep23649&rft_dat=%3Cproquest_pubme%3E1898678741%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-36fcb303a0c7a05471a652aacf388b0040cee7f326d1a81ea3a71ab31bc5fc123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898678741&rft_id=info:pmid/27033718&rfr_iscdi=true