Loading…

Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2)

The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest that Nrf2 plays a role in adipogenesis in vitro, and deletion of the Nrf2 gene protects against diet-induced obesity in mice. Here, we demonstr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2016-04, Vol.291 (14), p.7754-7766
Main Authors: Schneider, Kevin, Valdez, Joshua, Nguyen, Janice, Vawter, Marquis, Galke, Brandi, Kurtz, Theodore W., Chan, Jefferson Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-a5f75c89bf6332f4176bf5851465a2b8d859d2f05fb4a0347ca09e81687186263
cites cdi_FETCH-LOGICAL-c555t-a5f75c89bf6332f4176bf5851465a2b8d859d2f05fb4a0347ca09e81687186263
container_end_page 7766
container_issue 14
container_start_page 7754
container_title The Journal of biological chemistry
container_volume 291
creator Schneider, Kevin
Valdez, Joshua
Nguyen, Janice
Vawter, Marquis
Galke, Brandi
Kurtz, Theodore W.
Chan, Jefferson Y.
description The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest that Nrf2 plays a role in adipogenesis in vitro, and deletion of the Nrf2 gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity in Nrf2−/− mice is associated with a 20–30% increase in energy expenditure. Analysis of bioenergetics revealed that Nrf2−/− white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase in Ucp1 gene expression. Oxygen consumption is also increased nearly 2.5-fold in Nrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increased Ucp1 expression. Conversely, antioxidant chemicals (such as N-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor of Ucp1 expression) decreased Ucp1 and oxygen consumption in Nrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limiting Nrf2 function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders.
doi_str_mv 10.1074/jbc.M115.673756
format article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4817199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820413250</els_id><sourcerecordid>S0021925820413250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-a5f75c89bf6332f4176bf5851465a2b8d859d2f05fb4a0347ca09e81687186263</originalsourceid><addsrcrecordid>eNp1kc9rFDEUx4Modls9e5McFTrbJDPJZC6C1K0Wti1IC95CJnmzTd1mhpdscf-h_p1mWVv0YC6BfH888j6EvONszlnbnNz1bn7BuZyrtm6lekFmnOm6qiX_8ZLMGBO86oTUB-QwpTtWTtPx1-RAKN1wrZoZeTyPDsEm8HQRAVdbuvg1QfQhbxCO6Y2b-O4FIaUwxmNqo6ffIYWUbXRA80i_BMhViH7jSsdVX7S8pSHSi1D0pXU_Q1zRy41bg0V6Zl0esVrgNt_iGHwlKoS1zSV6jTYmh2HKZdCTUdAPlziIj2_Iq8GuE7z9cx-Rm7PF9em3ann19fz087JyUspcWTm00umuH1Rdi6HhreoHqSVvlLSi117LzouByaFvLKub1lnWgeZKt2UdQtVH5NO-d9r09-AdxIx2bSYM9xa3ZrTB_KvEcGtW44NpNG9515WCk32BwzElhOE5y5nZITMFmdkhM3tkJfH-75HP_idGxdDtDVA-_hAATXIByvZ9QHDZ-DH8t_w3tNKoEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2)</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Schneider, Kevin ; Valdez, Joshua ; Nguyen, Janice ; Vawter, Marquis ; Galke, Brandi ; Kurtz, Theodore W. ; Chan, Jefferson Y.</creator><creatorcontrib>Schneider, Kevin ; Valdez, Joshua ; Nguyen, Janice ; Vawter, Marquis ; Galke, Brandi ; Kurtz, Theodore W. ; Chan, Jefferson Y.</creatorcontrib><description>The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest that Nrf2 plays a role in adipogenesis in vitro, and deletion of the Nrf2 gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity in Nrf2−/− mice is associated with a 20–30% increase in energy expenditure. Analysis of bioenergetics revealed that Nrf2−/− white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a &gt;2-fold increase in Ucp1 gene expression. Oxygen consumption is also increased nearly 2.5-fold in Nrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increased Ucp1 expression. Conversely, antioxidant chemicals (such as N-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor of Ucp1 expression) decreased Ucp1 and oxygen consumption in Nrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limiting Nrf2 function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.673756</identifier><identifier>PMID: 26841864</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adipogenesis ; adipose tissue ; Animals ; antioxidant ; Diet - adverse effects ; Fibroblasts - metabolism ; Fibroblasts - pathology ; Free Radical Scavengers - pharmacology ; Gene Expression Regulation ; Ion Channels - biosynthesis ; Ion Channels - genetics ; Metabolism ; Mice ; Mice, Knockout ; Mitochondrial Proteins - biosynthesis ; Mitochondrial Proteins - genetics ; NF-E2-Related Factor 2 - deficiency ; Obesity - chemically induced ; Obesity - genetics ; Obesity - metabolism ; Obesity - pathology ; Oxidative Stress ; Oxygen Consumption - drug effects ; reactive oxygen species (ROS) ; uncoupling protein ; Uncoupling Protein 1</subject><ispartof>The Journal of biological chemistry, 2016-04, Vol.291 (14), p.7754-7766</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-a5f75c89bf6332f4176bf5851465a2b8d859d2f05fb4a0347ca09e81687186263</citedby><cites>FETCH-LOGICAL-c555t-a5f75c89bf6332f4176bf5851465a2b8d859d2f05fb4a0347ca09e81687186263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817199/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820413250$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26841864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneider, Kevin</creatorcontrib><creatorcontrib>Valdez, Joshua</creatorcontrib><creatorcontrib>Nguyen, Janice</creatorcontrib><creatorcontrib>Vawter, Marquis</creatorcontrib><creatorcontrib>Galke, Brandi</creatorcontrib><creatorcontrib>Kurtz, Theodore W.</creatorcontrib><creatorcontrib>Chan, Jefferson Y.</creatorcontrib><title>Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2)</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest that Nrf2 plays a role in adipogenesis in vitro, and deletion of the Nrf2 gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity in Nrf2−/− mice is associated with a 20–30% increase in energy expenditure. Analysis of bioenergetics revealed that Nrf2−/− white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a &gt;2-fold increase in Ucp1 gene expression. Oxygen consumption is also increased nearly 2.5-fold in Nrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increased Ucp1 expression. Conversely, antioxidant chemicals (such as N-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor of Ucp1 expression) decreased Ucp1 and oxygen consumption in Nrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limiting Nrf2 function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders.</description><subject>Adipogenesis</subject><subject>adipose tissue</subject><subject>Animals</subject><subject>antioxidant</subject><subject>Diet - adverse effects</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - pathology</subject><subject>Free Radical Scavengers - pharmacology</subject><subject>Gene Expression Regulation</subject><subject>Ion Channels - biosynthesis</subject><subject>Ion Channels - genetics</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondrial Proteins - biosynthesis</subject><subject>Mitochondrial Proteins - genetics</subject><subject>NF-E2-Related Factor 2 - deficiency</subject><subject>Obesity - chemically induced</subject><subject>Obesity - genetics</subject><subject>Obesity - metabolism</subject><subject>Obesity - pathology</subject><subject>Oxidative Stress</subject><subject>Oxygen Consumption - drug effects</subject><subject>reactive oxygen species (ROS)</subject><subject>uncoupling protein</subject><subject>Uncoupling Protein 1</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kc9rFDEUx4Modls9e5McFTrbJDPJZC6C1K0Wti1IC95CJnmzTd1mhpdscf-h_p1mWVv0YC6BfH888j6EvONszlnbnNz1bn7BuZyrtm6lekFmnOm6qiX_8ZLMGBO86oTUB-QwpTtWTtPx1-RAKN1wrZoZeTyPDsEm8HQRAVdbuvg1QfQhbxCO6Y2b-O4FIaUwxmNqo6ffIYWUbXRA80i_BMhViH7jSsdVX7S8pSHSi1D0pXU_Q1zRy41bg0V6Zl0esVrgNt_iGHwlKoS1zSV6jTYmh2HKZdCTUdAPlziIj2_Iq8GuE7z9cx-Rm7PF9em3ann19fz087JyUspcWTm00umuH1Rdi6HhreoHqSVvlLSi117LzouByaFvLKub1lnWgeZKt2UdQtVH5NO-d9r09-AdxIx2bSYM9xa3ZrTB_KvEcGtW44NpNG9515WCk32BwzElhOE5y5nZITMFmdkhM3tkJfH-75HP_idGxdDtDVA-_hAATXIByvZ9QHDZ-DH8t_w3tNKoEA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Schneider, Kevin</creator><creator>Valdez, Joshua</creator><creator>Nguyen, Janice</creator><creator>Vawter, Marquis</creator><creator>Galke, Brandi</creator><creator>Kurtz, Theodore W.</creator><creator>Chan, Jefferson Y.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160401</creationdate><title>Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2)</title><author>Schneider, Kevin ; Valdez, Joshua ; Nguyen, Janice ; Vawter, Marquis ; Galke, Brandi ; Kurtz, Theodore W. ; Chan, Jefferson Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-a5f75c89bf6332f4176bf5851465a2b8d859d2f05fb4a0347ca09e81687186263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adipogenesis</topic><topic>adipose tissue</topic><topic>Animals</topic><topic>antioxidant</topic><topic>Diet - adverse effects</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - pathology</topic><topic>Free Radical Scavengers - pharmacology</topic><topic>Gene Expression Regulation</topic><topic>Ion Channels - biosynthesis</topic><topic>Ion Channels - genetics</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondrial Proteins - biosynthesis</topic><topic>Mitochondrial Proteins - genetics</topic><topic>NF-E2-Related Factor 2 - deficiency</topic><topic>Obesity - chemically induced</topic><topic>Obesity - genetics</topic><topic>Obesity - metabolism</topic><topic>Obesity - pathology</topic><topic>Oxidative Stress</topic><topic>Oxygen Consumption - drug effects</topic><topic>reactive oxygen species (ROS)</topic><topic>uncoupling protein</topic><topic>Uncoupling Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Kevin</creatorcontrib><creatorcontrib>Valdez, Joshua</creatorcontrib><creatorcontrib>Nguyen, Janice</creatorcontrib><creatorcontrib>Vawter, Marquis</creatorcontrib><creatorcontrib>Galke, Brandi</creatorcontrib><creatorcontrib>Kurtz, Theodore W.</creatorcontrib><creatorcontrib>Chan, Jefferson Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Kevin</au><au>Valdez, Joshua</au><au>Nguyen, Janice</au><au>Vawter, Marquis</au><au>Galke, Brandi</au><au>Kurtz, Theodore W.</au><au>Chan, Jefferson Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2)</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>291</volume><issue>14</issue><spage>7754</spage><epage>7766</epage><pages>7754-7766</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest that Nrf2 plays a role in adipogenesis in vitro, and deletion of the Nrf2 gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity in Nrf2−/− mice is associated with a 20–30% increase in energy expenditure. Analysis of bioenergetics revealed that Nrf2−/− white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a &gt;2-fold increase in Ucp1 gene expression. Oxygen consumption is also increased nearly 2.5-fold in Nrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increased Ucp1 expression. Conversely, antioxidant chemicals (such as N-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor of Ucp1 expression) decreased Ucp1 and oxygen consumption in Nrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limiting Nrf2 function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26841864</pmid><doi>10.1074/jbc.M115.673756</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-04, Vol.291 (14), p.7754-7766
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4817199
source Elsevier ScienceDirect Journals; PubMed Central
subjects Adipogenesis
adipose tissue
Animals
antioxidant
Diet - adverse effects
Fibroblasts - metabolism
Fibroblasts - pathology
Free Radical Scavengers - pharmacology
Gene Expression Regulation
Ion Channels - biosynthesis
Ion Channels - genetics
Metabolism
Mice
Mice, Knockout
Mitochondrial Proteins - biosynthesis
Mitochondrial Proteins - genetics
NF-E2-Related Factor 2 - deficiency
Obesity - chemically induced
Obesity - genetics
Obesity - metabolism
Obesity - pathology
Oxidative Stress
Oxygen Consumption - drug effects
reactive oxygen species (ROS)
uncoupling protein
Uncoupling Protein 1
title Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20Energy%20Expenditure,%20Ucp1%20Expression,%20and%20Resistance%20to%20Diet-induced%20Obesity%20in%20Mice%20Lacking%20Nuclear%20Factor-Erythroid-2-related%20Transcription%20Factor-2%20(Nrf2)&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Schneider,%20Kevin&rft.date=2016-04-01&rft.volume=291&rft.issue=14&rft.spage=7754&rft.epage=7766&rft.pages=7754-7766&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.673756&rft_dat=%3Celsevier_pubme%3ES0021925820413250%3C/elsevier_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-a5f75c89bf6332f4176bf5851465a2b8d859d2f05fb4a0347ca09e81687186263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/26841864&rfr_iscdi=true