Loading…

Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification

•Neuronal activity recruits morphogens for neurotransmitter phenotype plasticity.•Trophic factors and calcium signaling modify neurotransmitter identity.•Emerging signaling cascades change morphogen action during neural development. Morphogenetic proteins are responsible for patterning the embryonic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical neuroanatomy 2016-04, Vol.73, p.3-8
Main Authors: Borodinsky, Laura N., Belgacem, Yesser H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-52e1cebb3ae3f8790d45b21319d740f870ac874df8b5524620945181371434f63
cites cdi_FETCH-LOGICAL-c504t-52e1cebb3ae3f8790d45b21319d740f870ac874df8b5524620945181371434f63
container_end_page 8
container_issue
container_start_page 3
container_title Journal of chemical neuroanatomy
container_volume 73
creator Borodinsky, Laura N.
Belgacem, Yesser H.
description •Neuronal activity recruits morphogens for neurotransmitter phenotype plasticity.•Trophic factors and calcium signaling modify neurotransmitter identity.•Emerging signaling cascades change morphogen action during neural development. Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.
doi_str_mv 10.1016/j.jchemneu.2015.12.001
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4818670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891061815000915</els_id><sourcerecordid>1790948245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-52e1cebb3ae3f8790d45b21319d740f870ac874df8b5524620945181371434f63</originalsourceid><addsrcrecordid>eNqNkcuO0zAUhiMEYsrAK4y8ZEGC73E2CFRxk0ZiA2vLcU4al8QOtlupD8E7j6vOjGAFK0vnfOf4t7-quiG4IZjIt_tmbydYPBwaioloCG0wJk-qDVEtqyXD-Gm1waojNZZEXVUvUtoXQDAun1dXVEolacc21e9tDCllM_9EZgl-h2AGm6OzZkbGZnd0-fQG5RjWyVk0llKICRk_oCXEdQo78JBLZ40hg_MJOY_yBCjC7jCb7IJHYUQlZulH49PicoaI1gl8yKcVUFrBurHcd2ZfVs9GMyd4dX9eVz8-ffy-_VLffvv8dfvhtrYC81wLCsRC3zMDbFRthwcuekoY6YaW41LBxqqWD6PqhaBcUtxxQRRhLeGMj5JdV-8ue9dDv8BgwZdws16jW0w86WCc_rvj3aR34ai5Ikq2uCx4fb8ghl8HSFkvLlmYZ-MhHJImJVTHFeXiP9BWsa7rhCqovKD2LCXC-JiIYH3Wrvf6Qbs-a9eE6mK1DN78-Z7HsQfPBXh_AaD86tFB1Mk68BYGF4tvPQT3rzvuAFDhxpk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778399958</pqid></control><display><type>article</type><title>Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification</title><source>Elsevier</source><creator>Borodinsky, Laura N. ; Belgacem, Yesser H.</creator><creatorcontrib>Borodinsky, Laura N. ; Belgacem, Yesser H.</creatorcontrib><description>•Neuronal activity recruits morphogens for neurotransmitter phenotype plasticity.•Trophic factors and calcium signaling modify neurotransmitter identity.•Emerging signaling cascades change morphogen action during neural development. Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.</description><identifier>ISSN: 0891-0618</identifier><identifier>EISSN: 1873-6300</identifier><identifier>DOI: 10.1016/j.jchemneu.2015.12.001</identifier><identifier>PMID: 26686293</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acetylcholine - metabolism ; Animals ; Bone Morphogenetic Proteins - metabolism ; Calcium Signaling ; Central Nervous System - embryology ; Central Nervous System - growth &amp; development ; Central Nervous System - physiology ; Electricity ; gamma-Aminobutyric Acid - metabolism ; Glutamic Acid - metabolism ; Morphogenetic proteins ; Neural Stem Cells - cytology ; Neural Stem Cells - physiology ; Neuronal Plasticity ; Neurons - cytology ; Neurons - physiology ; Neurotransmitter Agents - metabolism ; Neurotransmitter phenotype specification and plasticity ; Serotonin - metabolism ; Sonic hedgehog ; Spontaneous electrical activity ; Target-derived trophic factors</subject><ispartof>Journal of chemical neuroanatomy, 2016-04, Vol.73, p.3-8</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-52e1cebb3ae3f8790d45b21319d740f870ac874df8b5524620945181371434f63</citedby><cites>FETCH-LOGICAL-c504t-52e1cebb3ae3f8790d45b21319d740f870ac874df8b5524620945181371434f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26686293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borodinsky, Laura N.</creatorcontrib><creatorcontrib>Belgacem, Yesser H.</creatorcontrib><title>Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification</title><title>Journal of chemical neuroanatomy</title><addtitle>J Chem Neuroanat</addtitle><description>•Neuronal activity recruits morphogens for neurotransmitter phenotype plasticity.•Trophic factors and calcium signaling modify neurotransmitter identity.•Emerging signaling cascades change morphogen action during neural development. Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.</description><subject>Acetylcholine - metabolism</subject><subject>Animals</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Calcium Signaling</subject><subject>Central Nervous System - embryology</subject><subject>Central Nervous System - growth &amp; development</subject><subject>Central Nervous System - physiology</subject><subject>Electricity</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Glutamic Acid - metabolism</subject><subject>Morphogenetic proteins</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - physiology</subject><subject>Neuronal Plasticity</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitter phenotype specification and plasticity</subject><subject>Serotonin - metabolism</subject><subject>Sonic hedgehog</subject><subject>Spontaneous electrical activity</subject><subject>Target-derived trophic factors</subject><issn>0891-0618</issn><issn>1873-6300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcuO0zAUhiMEYsrAK4y8ZEGC73E2CFRxk0ZiA2vLcU4al8QOtlupD8E7j6vOjGAFK0vnfOf4t7-quiG4IZjIt_tmbydYPBwaioloCG0wJk-qDVEtqyXD-Gm1waojNZZEXVUvUtoXQDAun1dXVEolacc21e9tDCllM_9EZgl-h2AGm6OzZkbGZnd0-fQG5RjWyVk0llKICRk_oCXEdQo78JBLZ40hg_MJOY_yBCjC7jCb7IJHYUQlZulH49PicoaI1gl8yKcVUFrBurHcd2ZfVs9GMyd4dX9eVz8-ffy-_VLffvv8dfvhtrYC81wLCsRC3zMDbFRthwcuekoY6YaW41LBxqqWD6PqhaBcUtxxQRRhLeGMj5JdV-8ue9dDv8BgwZdws16jW0w86WCc_rvj3aR34ai5Ikq2uCx4fb8ghl8HSFkvLlmYZ-MhHJImJVTHFeXiP9BWsa7rhCqovKD2LCXC-JiIYH3Wrvf6Qbs-a9eE6mK1DN78-Z7HsQfPBXh_AaD86tFB1Mk68BYGF4tvPQT3rzvuAFDhxpk</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Borodinsky, Laura N.</creator><creator>Belgacem, Yesser H.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20160401</creationdate><title>Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification</title><author>Borodinsky, Laura N. ; Belgacem, Yesser H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-52e1cebb3ae3f8790d45b21319d740f870ac874df8b5524620945181371434f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetylcholine - metabolism</topic><topic>Animals</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Calcium Signaling</topic><topic>Central Nervous System - embryology</topic><topic>Central Nervous System - growth &amp; development</topic><topic>Central Nervous System - physiology</topic><topic>Electricity</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Glutamic Acid - metabolism</topic><topic>Morphogenetic proteins</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - physiology</topic><topic>Neuronal Plasticity</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitter phenotype specification and plasticity</topic><topic>Serotonin - metabolism</topic><topic>Sonic hedgehog</topic><topic>Spontaneous electrical activity</topic><topic>Target-derived trophic factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodinsky, Laura N.</creatorcontrib><creatorcontrib>Belgacem, Yesser H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical neuroanatomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodinsky, Laura N.</au><au>Belgacem, Yesser H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification</atitle><jtitle>Journal of chemical neuroanatomy</jtitle><addtitle>J Chem Neuroanat</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>73</volume><spage>3</spage><epage>8</epage><pages>3-8</pages><issn>0891-0618</issn><eissn>1873-6300</eissn><abstract>•Neuronal activity recruits morphogens for neurotransmitter phenotype plasticity.•Trophic factors and calcium signaling modify neurotransmitter identity.•Emerging signaling cascades change morphogen action during neural development. Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26686293</pmid><doi>10.1016/j.jchemneu.2015.12.001</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0891-0618
ispartof Journal of chemical neuroanatomy, 2016-04, Vol.73, p.3-8
issn 0891-0618
1873-6300
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4818670
source Elsevier
subjects Acetylcholine - metabolism
Animals
Bone Morphogenetic Proteins - metabolism
Calcium Signaling
Central Nervous System - embryology
Central Nervous System - growth & development
Central Nervous System - physiology
Electricity
gamma-Aminobutyric Acid - metabolism
Glutamic Acid - metabolism
Morphogenetic proteins
Neural Stem Cells - cytology
Neural Stem Cells - physiology
Neuronal Plasticity
Neurons - cytology
Neurons - physiology
Neurotransmitter Agents - metabolism
Neurotransmitter phenotype specification and plasticity
Serotonin - metabolism
Sonic hedgehog
Spontaneous electrical activity
Target-derived trophic factors
title Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crosstalk%20among%20electrical%20activity,%20trophic%20factors%20and%20morphogenetic%20proteins%20in%20the%20regulation%20of%20neurotransmitter%20phenotype%20specification&rft.jtitle=Journal%20of%20chemical%20neuroanatomy&rft.au=Borodinsky,%20Laura%20N.&rft.date=2016-04-01&rft.volume=73&rft.spage=3&rft.epage=8&rft.pages=3-8&rft.issn=0891-0618&rft.eissn=1873-6300&rft_id=info:doi/10.1016/j.jchemneu.2015.12.001&rft_dat=%3Cproquest_pubme%3E1790948245%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-52e1cebb3ae3f8790d45b21319d740f870ac874df8b5524620945181371434f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1778399958&rft_id=info:pmid/26686293&rfr_iscdi=true