Loading…

Some pitfalls in application of functional data analysis approach to association studies

One of the most effective methods for gene-based mapping employs functional data analysis, which smoothes data using standard basis functions. The full functional linear model includes a functional representation of genotypes and their effects, while the beta-smooth only model smoothes the genotype...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-04, Vol.6 (1), p.23918-23918, Article 23918
Main Authors: Svishcheva, G. R., Belonogova, N. M., Axenovich, T. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323
cites cdi_FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323
container_end_page 23918
container_issue 1
container_start_page 23918
container_title Scientific reports
container_volume 6
creator Svishcheva, G. R.
Belonogova, N. M.
Axenovich, T. I.
description One of the most effective methods for gene-based mapping employs functional data analysis, which smoothes data using standard basis functions. The full functional linear model includes a functional representation of genotypes and their effects, while the beta-smooth only model smoothes the genotype effects only. Benefits and limitations of the beta-smooth only model should be studied before using it in practice. Here we analytically compare the full and beta-smooth only models under various scenarios. We show that when the full model employs two sets of basis functions equal in type and number, genotypes smoothing is eliminated from the model and it becomes analytically equivalent to the beta-smooth only model. If the basis functions differ only in type, genotypes smoothing is also eliminated from the full model, but the type of basis functions used for smoothing genotype effects becomes redefined. This leads to misinterpretation of the results and may reduce statistical power. When basis functions differ in number, no analytical comparison of the full and beta-smooth only models is possible. However, we show that the numbers of basis functions set unequal can become equal during the analysis and the full model becomes disadvantageous.
doi_str_mv 10.1038/srep23918
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898678750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323</originalsourceid><addsrcrecordid>eNplkUtr3DAUhUVoyAxJFv0DRdBNE5hED9uSNoUS8oKBLJJCd-Javp4oeCxXsgv599Ew6TBttNGB--ncgw4hnzm74EzqyxRxENJwfUDmghXlQkghPu3pGTlN6YXlUwpTcHNEZkKxgitp5uTXY1gjHfzYQtcl6nsKw9B5B6MPPQ0tbafebTR0tIERKGT1mnzacDGAe6ZjoJBScH77Jo1T4zGdkMNsmfD0_T4mP2-un67uFsuH2_urH8uFK6QeF6ClQiOg0DXWXDUKW5Q5KGpZVdgIpUzFWWmYVgx40bISeNUgOleXWEshj8n3re8w1WtsHPZjhM4O0a8hvtoA3v476f2zXYU_ttDcCF5lg2_vBjH8njCNdu2Tw66DHsOULFcq7y4M26Bf_0NfwhTzh2RKG11lsGSZOttSLoaU22l3YTizm8rsrrLMftlPvyP_FpSB8y2Q8qhfYdxb-cHtDR-boXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898678750</pqid></control><display><type>article</type><title>Some pitfalls in application of functional data analysis approach to association studies</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Svishcheva, G. R. ; Belonogova, N. M. ; Axenovich, T. I.</creator><creatorcontrib>Svishcheva, G. R. ; Belonogova, N. M. ; Axenovich, T. I.</creatorcontrib><description>One of the most effective methods for gene-based mapping employs functional data analysis, which smoothes data using standard basis functions. The full functional linear model includes a functional representation of genotypes and their effects, while the beta-smooth only model smoothes the genotype effects only. Benefits and limitations of the beta-smooth only model should be studied before using it in practice. Here we analytically compare the full and beta-smooth only models under various scenarios. We show that when the full model employs two sets of basis functions equal in type and number, genotypes smoothing is eliminated from the model and it becomes analytically equivalent to the beta-smooth only model. If the basis functions differ only in type, genotypes smoothing is also eliminated from the full model, but the type of basis functions used for smoothing genotype effects becomes redefined. This leads to misinterpretation of the results and may reduce statistical power. When basis functions differ in number, no analytical comparison of the full and beta-smooth only models is possible. However, we show that the numbers of basis functions set unequal can become equal during the analysis and the full model becomes disadvantageous.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep23918</identifier><identifier>PMID: 27041739</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/43 ; 631/208/205/2138 ; 631/208/480 ; Air flow ; Computer Simulation ; Data analysis ; Data processing ; Distribution engineering ; Gene mapping ; Genetic Association Studies - methods ; Genetic Association Studies - standards ; Genotype ; Genotypes ; Humanities and Social Sciences ; Humans ; Linear Models ; Models, Genetic ; Models, Statistical ; multidisciplinary ; Science</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.23918-23918, Article 23918</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323</citedby><cites>FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898678750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898678750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27041739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Svishcheva, G. R.</creatorcontrib><creatorcontrib>Belonogova, N. M.</creatorcontrib><creatorcontrib>Axenovich, T. I.</creatorcontrib><title>Some pitfalls in application of functional data analysis approach to association studies</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>One of the most effective methods for gene-based mapping employs functional data analysis, which smoothes data using standard basis functions. The full functional linear model includes a functional representation of genotypes and their effects, while the beta-smooth only model smoothes the genotype effects only. Benefits and limitations of the beta-smooth only model should be studied before using it in practice. Here we analytically compare the full and beta-smooth only models under various scenarios. We show that when the full model employs two sets of basis functions equal in type and number, genotypes smoothing is eliminated from the model and it becomes analytically equivalent to the beta-smooth only model. If the basis functions differ only in type, genotypes smoothing is also eliminated from the full model, but the type of basis functions used for smoothing genotype effects becomes redefined. This leads to misinterpretation of the results and may reduce statistical power. When basis functions differ in number, no analytical comparison of the full and beta-smooth only models is possible. However, we show that the numbers of basis functions set unequal can become equal during the analysis and the full model becomes disadvantageous.</description><subject>45/43</subject><subject>631/208/205/2138</subject><subject>631/208/480</subject><subject>Air flow</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Distribution engineering</subject><subject>Gene mapping</subject><subject>Genetic Association Studies - methods</subject><subject>Genetic Association Studies - standards</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>multidisciplinary</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkUtr3DAUhUVoyAxJFv0DRdBNE5hED9uSNoUS8oKBLJJCd-Javp4oeCxXsgv599Ew6TBttNGB--ncgw4hnzm74EzqyxRxENJwfUDmghXlQkghPu3pGTlN6YXlUwpTcHNEZkKxgitp5uTXY1gjHfzYQtcl6nsKw9B5B6MPPQ0tbafebTR0tIERKGT1mnzacDGAe6ZjoJBScH77Jo1T4zGdkMNsmfD0_T4mP2-un67uFsuH2_urH8uFK6QeF6ClQiOg0DXWXDUKW5Q5KGpZVdgIpUzFWWmYVgx40bISeNUgOleXWEshj8n3re8w1WtsHPZjhM4O0a8hvtoA3v476f2zXYU_ttDcCF5lg2_vBjH8njCNdu2Tw66DHsOULFcq7y4M26Bf_0NfwhTzh2RKG11lsGSZOttSLoaU22l3YTizm8rsrrLMftlPvyP_FpSB8y2Q8qhfYdxb-cHtDR-boXA</recordid><startdate>20160404</startdate><enddate>20160404</enddate><creator>Svishcheva, G. R.</creator><creator>Belonogova, N. M.</creator><creator>Axenovich, T. I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160404</creationdate><title>Some pitfalls in application of functional data analysis approach to association studies</title><author>Svishcheva, G. R. ; Belonogova, N. M. ; Axenovich, T. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45/43</topic><topic>631/208/205/2138</topic><topic>631/208/480</topic><topic>Air flow</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Distribution engineering</topic><topic>Gene mapping</topic><topic>Genetic Association Studies - methods</topic><topic>Genetic Association Studies - standards</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>multidisciplinary</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svishcheva, G. R.</creatorcontrib><creatorcontrib>Belonogova, N. M.</creatorcontrib><creatorcontrib>Axenovich, T. I.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svishcheva, G. R.</au><au>Belonogova, N. M.</au><au>Axenovich, T. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some pitfalls in application of functional data analysis approach to association studies</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-04</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>23918</spage><epage>23918</epage><pages>23918-23918</pages><artnum>23918</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>One of the most effective methods for gene-based mapping employs functional data analysis, which smoothes data using standard basis functions. The full functional linear model includes a functional representation of genotypes and their effects, while the beta-smooth only model smoothes the genotype effects only. Benefits and limitations of the beta-smooth only model should be studied before using it in practice. Here we analytically compare the full and beta-smooth only models under various scenarios. We show that when the full model employs two sets of basis functions equal in type and number, genotypes smoothing is eliminated from the model and it becomes analytically equivalent to the beta-smooth only model. If the basis functions differ only in type, genotypes smoothing is also eliminated from the full model, but the type of basis functions used for smoothing genotype effects becomes redefined. This leads to misinterpretation of the results and may reduce statistical power. When basis functions differ in number, no analytical comparison of the full and beta-smooth only models is possible. However, we show that the numbers of basis functions set unequal can become equal during the analysis and the full model becomes disadvantageous.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27041739</pmid><doi>10.1038/srep23918</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-04, Vol.6 (1), p.23918-23918, Article 23918
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819216
source Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 45/43
631/208/205/2138
631/208/480
Air flow
Computer Simulation
Data analysis
Data processing
Distribution engineering
Gene mapping
Genetic Association Studies - methods
Genetic Association Studies - standards
Genotype
Genotypes
Humanities and Social Sciences
Humans
Linear Models
Models, Genetic
Models, Statistical
multidisciplinary
Science
title Some pitfalls in application of functional data analysis approach to association studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20pitfalls%20in%20application%20of%20functional%20data%20analysis%20approach%20to%20association%20studies&rft.jtitle=Scientific%20reports&rft.au=Svishcheva,%20G.%20R.&rft.date=2016-04-04&rft.volume=6&rft.issue=1&rft.spage=23918&rft.epage=23918&rft.pages=23918-23918&rft.artnum=23918&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep23918&rft_dat=%3Cproquest_pubme%3E1898678750%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898678750&rft_id=info:pmid/27041739&rfr_iscdi=true