Loading…
Some pitfalls in application of functional data analysis approach to association studies
One of the most effective methods for gene-based mapping employs functional data analysis, which smoothes data using standard basis functions. The full functional linear model includes a functional representation of genotypes and their effects, while the beta-smooth only model smoothes the genotype...
Saved in:
Published in: | Scientific reports 2016-04, Vol.6 (1), p.23918-23918, Article 23918 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323 |
container_end_page | 23918 |
container_issue | 1 |
container_start_page | 23918 |
container_title | Scientific reports |
container_volume | 6 |
creator | Svishcheva, G. R. Belonogova, N. M. Axenovich, T. I. |
description | One of the most effective methods for gene-based mapping employs functional data analysis, which smoothes data using standard basis functions. The full functional linear model includes a functional representation of genotypes and their effects, while the beta-smooth only model smoothes the genotype effects only. Benefits and limitations of the beta-smooth only model should be studied before using it in practice. Here we analytically compare the full and beta-smooth only models under various scenarios. We show that when the full model employs two sets of basis functions equal in type and number, genotypes smoothing is eliminated from the model and it becomes analytically equivalent to the beta-smooth only model. If the basis functions differ only in type, genotypes smoothing is also eliminated from the full model, but the type of basis functions used for smoothing genotype effects becomes redefined. This leads to misinterpretation of the results and may reduce statistical power. When basis functions differ in number, no analytical comparison of the full and beta-smooth only models is possible. However, we show that the numbers of basis functions set unequal can become equal during the analysis and the full model becomes disadvantageous. |
doi_str_mv | 10.1038/srep23918 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898678750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323</originalsourceid><addsrcrecordid>eNplkUtr3DAUhUVoyAxJFv0DRdBNE5hED9uSNoUS8oKBLJJCd-Javp4oeCxXsgv599Ew6TBttNGB--ncgw4hnzm74EzqyxRxENJwfUDmghXlQkghPu3pGTlN6YXlUwpTcHNEZkKxgitp5uTXY1gjHfzYQtcl6nsKw9B5B6MPPQ0tbafebTR0tIERKGT1mnzacDGAe6ZjoJBScH77Jo1T4zGdkMNsmfD0_T4mP2-un67uFsuH2_urH8uFK6QeF6ClQiOg0DXWXDUKW5Q5KGpZVdgIpUzFWWmYVgx40bISeNUgOleXWEshj8n3re8w1WtsHPZjhM4O0a8hvtoA3v476f2zXYU_ttDcCF5lg2_vBjH8njCNdu2Tw66DHsOULFcq7y4M26Bf_0NfwhTzh2RKG11lsGSZOttSLoaU22l3YTizm8rsrrLMftlPvyP_FpSB8y2Q8qhfYdxb-cHtDR-boXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898678750</pqid></control><display><type>article</type><title>Some pitfalls in application of functional data analysis approach to association studies</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Svishcheva, G. R. ; Belonogova, N. M. ; Axenovich, T. I.</creator><creatorcontrib>Svishcheva, G. R. ; Belonogova, N. M. ; Axenovich, T. I.</creatorcontrib><description>One of the most effective methods for gene-based mapping employs functional data analysis, which smoothes data using standard basis functions. The full functional linear model includes a functional representation of genotypes and their effects, while the beta-smooth only model smoothes the genotype effects only. Benefits and limitations of the beta-smooth only model should be studied before using it in practice. Here we analytically compare the full and beta-smooth only models under various scenarios. We show that when the full model employs two sets of basis functions equal in type and number, genotypes smoothing is eliminated from the model and it becomes analytically equivalent to the beta-smooth only model. If the basis functions differ only in type, genotypes smoothing is also eliminated from the full model, but the type of basis functions used for smoothing genotype effects becomes redefined. This leads to misinterpretation of the results and may reduce statistical power. When basis functions differ in number, no analytical comparison of the full and beta-smooth only models is possible. However, we show that the numbers of basis functions set unequal can become equal during the analysis and the full model becomes disadvantageous.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep23918</identifier><identifier>PMID: 27041739</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/43 ; 631/208/205/2138 ; 631/208/480 ; Air flow ; Computer Simulation ; Data analysis ; Data processing ; Distribution engineering ; Gene mapping ; Genetic Association Studies - methods ; Genetic Association Studies - standards ; Genotype ; Genotypes ; Humanities and Social Sciences ; Humans ; Linear Models ; Models, Genetic ; Models, Statistical ; multidisciplinary ; Science</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.23918-23918, Article 23918</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323</citedby><cites>FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898678750/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898678750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27041739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Svishcheva, G. R.</creatorcontrib><creatorcontrib>Belonogova, N. M.</creatorcontrib><creatorcontrib>Axenovich, T. I.</creatorcontrib><title>Some pitfalls in application of functional data analysis approach to association studies</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>One of the most effective methods for gene-based mapping employs functional data analysis, which smoothes data using standard basis functions. The full functional linear model includes a functional representation of genotypes and their effects, while the beta-smooth only model smoothes the genotype effects only. Benefits and limitations of the beta-smooth only model should be studied before using it in practice. Here we analytically compare the full and beta-smooth only models under various scenarios. We show that when the full model employs two sets of basis functions equal in type and number, genotypes smoothing is eliminated from the model and it becomes analytically equivalent to the beta-smooth only model. If the basis functions differ only in type, genotypes smoothing is also eliminated from the full model, but the type of basis functions used for smoothing genotype effects becomes redefined. This leads to misinterpretation of the results and may reduce statistical power. When basis functions differ in number, no analytical comparison of the full and beta-smooth only models is possible. However, we show that the numbers of basis functions set unequal can become equal during the analysis and the full model becomes disadvantageous.</description><subject>45/43</subject><subject>631/208/205/2138</subject><subject>631/208/480</subject><subject>Air flow</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Distribution engineering</subject><subject>Gene mapping</subject><subject>Genetic Association Studies - methods</subject><subject>Genetic Association Studies - standards</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>multidisciplinary</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkUtr3DAUhUVoyAxJFv0DRdBNE5hED9uSNoUS8oKBLJJCd-Javp4oeCxXsgv599Ew6TBttNGB--ncgw4hnzm74EzqyxRxENJwfUDmghXlQkghPu3pGTlN6YXlUwpTcHNEZkKxgitp5uTXY1gjHfzYQtcl6nsKw9B5B6MPPQ0tbafebTR0tIERKGT1mnzacDGAe6ZjoJBScH77Jo1T4zGdkMNsmfD0_T4mP2-un67uFsuH2_urH8uFK6QeF6ClQiOg0DXWXDUKW5Q5KGpZVdgIpUzFWWmYVgx40bISeNUgOleXWEshj8n3re8w1WtsHPZjhM4O0a8hvtoA3v476f2zXYU_ttDcCF5lg2_vBjH8njCNdu2Tw66DHsOULFcq7y4M26Bf_0NfwhTzh2RKG11lsGSZOttSLoaU22l3YTizm8rsrrLMftlPvyP_FpSB8y2Q8qhfYdxb-cHtDR-boXA</recordid><startdate>20160404</startdate><enddate>20160404</enddate><creator>Svishcheva, G. R.</creator><creator>Belonogova, N. M.</creator><creator>Axenovich, T. I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160404</creationdate><title>Some pitfalls in application of functional data analysis approach to association studies</title><author>Svishcheva, G. R. ; Belonogova, N. M. ; Axenovich, T. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45/43</topic><topic>631/208/205/2138</topic><topic>631/208/480</topic><topic>Air flow</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Distribution engineering</topic><topic>Gene mapping</topic><topic>Genetic Association Studies - methods</topic><topic>Genetic Association Studies - standards</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>multidisciplinary</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svishcheva, G. R.</creatorcontrib><creatorcontrib>Belonogova, N. M.</creatorcontrib><creatorcontrib>Axenovich, T. I.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svishcheva, G. R.</au><au>Belonogova, N. M.</au><au>Axenovich, T. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some pitfalls in application of functional data analysis approach to association studies</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-04</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>23918</spage><epage>23918</epage><pages>23918-23918</pages><artnum>23918</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>One of the most effective methods for gene-based mapping employs functional data analysis, which smoothes data using standard basis functions. The full functional linear model includes a functional representation of genotypes and their effects, while the beta-smooth only model smoothes the genotype effects only. Benefits and limitations of the beta-smooth only model should be studied before using it in practice. Here we analytically compare the full and beta-smooth only models under various scenarios. We show that when the full model employs two sets of basis functions equal in type and number, genotypes smoothing is eliminated from the model and it becomes analytically equivalent to the beta-smooth only model. If the basis functions differ only in type, genotypes smoothing is also eliminated from the full model, but the type of basis functions used for smoothing genotype effects becomes redefined. This leads to misinterpretation of the results and may reduce statistical power. When basis functions differ in number, no analytical comparison of the full and beta-smooth only models is possible. However, we show that the numbers of basis functions set unequal can become equal during the analysis and the full model becomes disadvantageous.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27041739</pmid><doi>10.1038/srep23918</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-04, Vol.6 (1), p.23918-23918, Article 23918 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819216 |
source | Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 45/43 631/208/205/2138 631/208/480 Air flow Computer Simulation Data analysis Data processing Distribution engineering Gene mapping Genetic Association Studies - methods Genetic Association Studies - standards Genotype Genotypes Humanities and Social Sciences Humans Linear Models Models, Genetic Models, Statistical multidisciplinary Science |
title | Some pitfalls in application of functional data analysis approach to association studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20pitfalls%20in%20application%20of%20functional%20data%20analysis%20approach%20to%20association%20studies&rft.jtitle=Scientific%20reports&rft.au=Svishcheva,%20G.%20R.&rft.date=2016-04-04&rft.volume=6&rft.issue=1&rft.spage=23918&rft.epage=23918&rft.pages=23918-23918&rft.artnum=23918&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep23918&rft_dat=%3Cproquest_pubme%3E1898678750%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-a837e92a48beb17d7efe3052e8366ed2779610590870a14f05a16deeccb5eb323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898678750&rft_id=info:pmid/27041739&rfr_iscdi=true |