Loading…

Topological organization of connectivity strength in the rat connectome

The mammalian brain is a complex network of anatomically interconnected regions. Animal studies allow for an invasive measurement of the connections of these networks at the macroscale level by means of neuronal tracing of axonal projections, providing a unique opportunity for the formation of detai...

Full description

Saved in:
Bibliographic Details
Published in:Brain Structure and Function 2016-04, Vol.221 (3), p.1719-1736
Main Authors: van den Heuvel, Martijn P., Scholtens, Lianne H., de Reus, Marcel A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mammalian brain is a complex network of anatomically interconnected regions. Animal studies allow for an invasive measurement of the connections of these networks at the macroscale level by means of neuronal tracing of axonal projections, providing a unique opportunity for the formation of detailed ‘connectome maps’. Here we analyzed the macroscale connectome of the rat brain, including detailed information on the macroscale interregional pathways between 67 cortical and subcortical regions as provided by the high-quality, open-access BAMS-II database on rat brain anatomical projections, focusing in particular on the non-uniform distribution of projection strength across pathways. First, network analysis confirmed a small-world, modular and rich club organization of the rat connectome; findings in clear support of previous studies on connectome organization in other mammalian species. More importantly, analyzing network properties of different connection weight classes, we extend previous observations by showing that pathways with different topological roles have significantly different levels of connectivity strength. Among other findings, intramodular connections are shown to display a higher connectivity strength than intermodular connections and hub-to-hub rich club connections are shown to include significantly stronger pathways than connections spanning between peripheral nodes. Furthermore, we show evidence indicating that edges of different weight classes display different topological structures, potentially suggesting varying roles and origins of pathways in the mammalian brain network.
ISSN:1863-2653
1863-2661
0340-2061
DOI:10.1007/s00429-015-0999-6