Loading…
Site-Specific Internal Motions in GB1 Protein Microcrystals Revealed by 3D 2H–13C–13C Solid-State NMR Spectroscopy
2H quadrupolar line shapes deliver rich information about protein dynamics. A newly designed 3D 2H–13C–13C solid-state NMR magic angle spinning (MAS) experiment is presented and demonstrated on the microcrystalline β1 immunoglobulin binding domain of protein G (GB1). The implementation of 2H–13C adi...
Saved in:
Published in: | Journal of the American Chemical Society 2016-03, Vol.138 (12), p.4105-4119 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4119 |
container_issue | 12 |
container_start_page | 4105 |
container_title | Journal of the American Chemical Society |
container_volume | 138 |
creator | Shi, Xiangyan Rienstra, Chad M |
description | 2H quadrupolar line shapes deliver rich information about protein dynamics. A newly designed 3D 2H–13C–13C solid-state NMR magic angle spinning (MAS) experiment is presented and demonstrated on the microcrystalline β1 immunoglobulin binding domain of protein G (GB1). The implementation of 2H–13C adiabatic rotor-echo-short-pulse-irradiation cross-polarization (RESPIRATION CP) ensures the accuracy of the extracted line shapes and provides enhanced sensitivity relative to conventional CP methods. The 3D 2H–13C–13C spectrum reveals 2H line shapes for 140 resolved aliphatic deuterium sites. Motional-averaged 2H quadrupolar parameters obtained from the line-shape fitting identify side-chain motions. Restricted side-chain dynamics are observed for a number of polar residues including K13, D22, E27, K31, D36, N37, D46, D47, K50, and E56, which we attribute to the effects of salt bridges and hydrogen bonds. In contrast, we observe significantly enhanced side-chain flexibility for Q2, K4, K10, E15, E19, N35, N40, and E42, due to solvent exposure and low packing density. T11, T16, and T17 side chains exhibit motions with larger amplitudes than other Thr residues due to solvent interactions. The side chains of L5, V54, and V29 are highly rigid because they are packed in the core of the protein. High correlations were demonstrated between GB1 side-chain dynamics and its biological function. Large-amplitude side-chain motions are observed for regions contacting and interacting with immunoglobulin G (IgG). In contrast, rigid side chains are primarily found for residues in the structural core of the protein that are absent from protein binding and interactions. |
doi_str_mv | 10.1021/jacs.5b12974 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812881642</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2484-d5b9d87d38e8a856e08494b6accf23eedefa5035820e52125647a21d6ad736273</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhi1ERUPhxhn5yGWLPV57vRckCKWt1ABq4Gx57Qk42qyD7UTKrf-Bf8gvYVdN-bjMh2b0vKN5CXnB2TlnwF-vrcvnsuPQNvUjMuMSWCU5qMdkxhiDqtFKnJKnOa_HtgbNn5BTULpux3pG9stQsFpu0YVVcPR6KJgG29NFLCEOmYaBXr7j9HOKBcd6EVyKLh1ysX2mt7hH26On3YGK9xSuft395GJ-H-ky9sFXy2IL0o-LWzqJlBSzi9vDM3KyGgn4_JjPyNcPF1_mV9XNp8vr-dubykKt68rLrvW68UKjtloqZNPdnbLOrUAgelxZyYTUwFACB6nqxgL3yvpGKGjEGXlzz93uug16h0NJtjfbFDY2HUy0wfw_GcJ38y3uTa15q1s9Al4dASn-2GEuZhOyw763A8ZdNlxz0JqrGsbVl_9q_RF5ePZf1uiYWcfd9OiRwMzko5l8NEcfxW-C4Y-k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812881642</pqid></control><display><type>article</type><title>Site-Specific Internal Motions in GB1 Protein Microcrystals Revealed by 3D 2H–13C–13C Solid-State NMR Spectroscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Shi, Xiangyan ; Rienstra, Chad M</creator><creatorcontrib>Shi, Xiangyan ; Rienstra, Chad M</creatorcontrib><description>2H quadrupolar line shapes deliver rich information about protein dynamics. A newly designed 3D 2H–13C–13C solid-state NMR magic angle spinning (MAS) experiment is presented and demonstrated on the microcrystalline β1 immunoglobulin binding domain of protein G (GB1). The implementation of 2H–13C adiabatic rotor-echo-short-pulse-irradiation cross-polarization (RESPIRATION CP) ensures the accuracy of the extracted line shapes and provides enhanced sensitivity relative to conventional CP methods. The 3D 2H–13C–13C spectrum reveals 2H line shapes for 140 resolved aliphatic deuterium sites. Motional-averaged 2H quadrupolar parameters obtained from the line-shape fitting identify side-chain motions. Restricted side-chain dynamics are observed for a number of polar residues including K13, D22, E27, K31, D36, N37, D46, D47, K50, and E56, which we attribute to the effects of salt bridges and hydrogen bonds. In contrast, we observe significantly enhanced side-chain flexibility for Q2, K4, K10, E15, E19, N35, N40, and E42, due to solvent exposure and low packing density. T11, T16, and T17 side chains exhibit motions with larger amplitudes than other Thr residues due to solvent interactions. The side chains of L5, V54, and V29 are highly rigid because they are packed in the core of the protein. High correlations were demonstrated between GB1 side-chain dynamics and its biological function. Large-amplitude side-chain motions are observed for regions contacting and interacting with immunoglobulin G (IgG). In contrast, rigid side chains are primarily found for residues in the structural core of the protein that are absent from protein binding and interactions.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b12974</identifier><identifier>PMID: 26849428</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Carrier Proteins - chemistry ; Carrier Proteins - metabolism ; Crystallography, X-Ray ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Receptors, GABA-B - chemistry ; Receptors, GABA-B - metabolism</subject><ispartof>Journal of the American Chemical Society, 2016-03, Vol.138 (12), p.4105-4119</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright © 2016 American Chemical Society 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26849428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Xiangyan</creatorcontrib><creatorcontrib>Rienstra, Chad M</creatorcontrib><title>Site-Specific Internal Motions in GB1 Protein Microcrystals Revealed by 3D 2H–13C–13C Solid-State NMR Spectroscopy</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>2H quadrupolar line shapes deliver rich information about protein dynamics. A newly designed 3D 2H–13C–13C solid-state NMR magic angle spinning (MAS) experiment is presented and demonstrated on the microcrystalline β1 immunoglobulin binding domain of protein G (GB1). The implementation of 2H–13C adiabatic rotor-echo-short-pulse-irradiation cross-polarization (RESPIRATION CP) ensures the accuracy of the extracted line shapes and provides enhanced sensitivity relative to conventional CP methods. The 3D 2H–13C–13C spectrum reveals 2H line shapes for 140 resolved aliphatic deuterium sites. Motional-averaged 2H quadrupolar parameters obtained from the line-shape fitting identify side-chain motions. Restricted side-chain dynamics are observed for a number of polar residues including K13, D22, E27, K31, D36, N37, D46, D47, K50, and E56, which we attribute to the effects of salt bridges and hydrogen bonds. In contrast, we observe significantly enhanced side-chain flexibility for Q2, K4, K10, E15, E19, N35, N40, and E42, due to solvent exposure and low packing density. T11, T16, and T17 side chains exhibit motions with larger amplitudes than other Thr residues due to solvent interactions. The side chains of L5, V54, and V29 are highly rigid because they are packed in the core of the protein. High correlations were demonstrated between GB1 side-chain dynamics and its biological function. Large-amplitude side-chain motions are observed for regions contacting and interacting with immunoglobulin G (IgG). In contrast, rigid side chains are primarily found for residues in the structural core of the protein that are absent from protein binding and interactions.</description><subject>Binding Sites</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - metabolism</subject><subject>Crystallography, X-Ray</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Receptors, GABA-B - chemistry</subject><subject>Receptors, GABA-B - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkU1vEzEQhi1ERUPhxhn5yGWLPV57vRckCKWt1ABq4Gx57Qk42qyD7UTKrf-Bf8gvYVdN-bjMh2b0vKN5CXnB2TlnwF-vrcvnsuPQNvUjMuMSWCU5qMdkxhiDqtFKnJKnOa_HtgbNn5BTULpux3pG9stQsFpu0YVVcPR6KJgG29NFLCEOmYaBXr7j9HOKBcd6EVyKLh1ysX2mt7hH26On3YGK9xSuft395GJ-H-ky9sFXy2IL0o-LWzqJlBSzi9vDM3KyGgn4_JjPyNcPF1_mV9XNp8vr-dubykKt68rLrvW68UKjtloqZNPdnbLOrUAgelxZyYTUwFACB6nqxgL3yvpGKGjEGXlzz93uug16h0NJtjfbFDY2HUy0wfw_GcJ38y3uTa15q1s9Al4dASn-2GEuZhOyw763A8ZdNlxz0JqrGsbVl_9q_RF5ePZf1uiYWcfd9OiRwMzko5l8NEcfxW-C4Y-k</recordid><startdate>20160330</startdate><enddate>20160330</enddate><creator>Shi, Xiangyan</creator><creator>Rienstra, Chad M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160330</creationdate><title>Site-Specific Internal Motions in GB1 Protein Microcrystals Revealed by 3D 2H–13C–13C Solid-State NMR Spectroscopy</title><author>Shi, Xiangyan ; Rienstra, Chad M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2484-d5b9d87d38e8a856e08494b6accf23eedefa5035820e52125647a21d6ad736273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binding Sites</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - metabolism</topic><topic>Crystallography, X-Ray</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Receptors, GABA-B - chemistry</topic><topic>Receptors, GABA-B - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xiangyan</creatorcontrib><creatorcontrib>Rienstra, Chad M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xiangyan</au><au>Rienstra, Chad M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-Specific Internal Motions in GB1 Protein Microcrystals Revealed by 3D 2H–13C–13C Solid-State NMR Spectroscopy</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-03-30</date><risdate>2016</risdate><volume>138</volume><issue>12</issue><spage>4105</spage><epage>4119</epage><pages>4105-4119</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>2H quadrupolar line shapes deliver rich information about protein dynamics. A newly designed 3D 2H–13C–13C solid-state NMR magic angle spinning (MAS) experiment is presented and demonstrated on the microcrystalline β1 immunoglobulin binding domain of protein G (GB1). The implementation of 2H–13C adiabatic rotor-echo-short-pulse-irradiation cross-polarization (RESPIRATION CP) ensures the accuracy of the extracted line shapes and provides enhanced sensitivity relative to conventional CP methods. The 3D 2H–13C–13C spectrum reveals 2H line shapes for 140 resolved aliphatic deuterium sites. Motional-averaged 2H quadrupolar parameters obtained from the line-shape fitting identify side-chain motions. Restricted side-chain dynamics are observed for a number of polar residues including K13, D22, E27, K31, D36, N37, D46, D47, K50, and E56, which we attribute to the effects of salt bridges and hydrogen bonds. In contrast, we observe significantly enhanced side-chain flexibility for Q2, K4, K10, E15, E19, N35, N40, and E42, due to solvent exposure and low packing density. T11, T16, and T17 side chains exhibit motions with larger amplitudes than other Thr residues due to solvent interactions. The side chains of L5, V54, and V29 are highly rigid because they are packed in the core of the protein. High correlations were demonstrated between GB1 side-chain dynamics and its biological function. Large-amplitude side-chain motions are observed for regions contacting and interacting with immunoglobulin G (IgG). In contrast, rigid side chains are primarily found for residues in the structural core of the protein that are absent from protein binding and interactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26849428</pmid><doi>10.1021/jacs.5b12974</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2016-03, Vol.138 (12), p.4105-4119 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4819898 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Binding Sites Carrier Proteins - chemistry Carrier Proteins - metabolism Crystallography, X-Ray Magnetic Resonance Spectroscopy Models, Molecular Receptors, GABA-B - chemistry Receptors, GABA-B - metabolism |
title | Site-Specific Internal Motions in GB1 Protein Microcrystals Revealed by 3D 2H–13C–13C Solid-State NMR Spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A42%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-Specific%20Internal%20Motions%20in%20GB1%20Protein%20Microcrystals%20Revealed%20by%203D%202H%E2%80%9313C%E2%80%9313C%20Solid-State%20NMR%20Spectroscopy&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Shi,%20Xiangyan&rft.date=2016-03-30&rft.volume=138&rft.issue=12&rft.spage=4105&rft.epage=4119&rft.pages=4105-4119&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b12974&rft_dat=%3Cproquest_pubme%3E1812881642%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2484-d5b9d87d38e8a856e08494b6accf23eedefa5035820e52125647a21d6ad736273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812881642&rft_id=info:pmid/26849428&rfr_iscdi=true |