Loading…

Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating

One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl4) to neutral gold Au(0) by reducing agents, such as sodium citrate or sodium borohydride. The extension of this method to decorate iron oxide or similar nano...

Full description

Saved in:
Bibliographic Details
Published in:Journal of visualized experiments 2016-02, Vol.120 (108), p.53598-53598
Main Authors: Murph, Simona E Hunyadi, Larsen, George K, Lascola, Robert J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-a514c1711e3ed1c15a2ee5acdd3b5737969d1eb8b0d7d59ed5fe9aa89564a7923
cites
container_end_page 53598
container_issue 108
container_start_page 53598
container_title Journal of visualized experiments
container_volume 120
creator Murph, Simona E Hunyadi
Larsen, George K
Lascola, Robert J
description One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl4) to neutral gold Au(0) by reducing agents, such as sodium citrate or sodium borohydride. The extension of this method to decorate iron oxide or similar nanoparticles with gold nanoparticles to create multifunctional hybrid Fe2O3-Au nanoparticles is straightforward. This approach yields fairly good control over Au nanoparticle dimensions and loading onto Fe2O3. Additionally, the Au metal size, shape, and loading can easily be tuned by changing experimental parameters (e.g., reactant concentrations, reducing agents, surfactants, etc.). An advantage of this procedure is that the reaction can be done in air or water, and, in principle, is amenable to scaling up. The use of such optically tunable Fe2O3-Au nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. In addition to its plasmonic effects, nanoscale Au provides a unique surface for interesting chemistries and catalysis. The Fe2O3 material provides additional functionality due to its magnetic property. For example, an external magnetic field could be used to collect and recycle the hybrid Fe2O3-Au nanoparticles after a catalytic experiment, or alternatively, the magnetic Fe2O3 can be used for hyperthermia studies through magnetic heat induction. The photothermal experiment described in this report measures bulk temperature change and nanoparticle solution mass loss as functions of time using infrared thermocouples and a balance, respectively. The ease of sample preparation and the use of readily available equipment are distinct advantages of this technique. A caveat is that these photothermal measurements assess the bulk solution temperature and not the surface of the nanoparticle where the heat is transduced and the temperature is likely to be higher.
doi_str_mv 10.3791/53598
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4828179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773429188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a514c1711e3ed1c15a2ee5acdd3b5737969d1eb8b0d7d59ed5fe9aa89564a7923</originalsourceid><addsrcrecordid>eNpVkU9LxDAQxYMouq5-BSmC4KXaNE2TXIRlcV3BfwcFbyFNphrpJmuSCn57q6vLepqB-fHmzTyEDnFxRpjA55RQwbfQCIuqyAvOnrc3-j20H-NbUdRlQfku2itrUbNK4BG6ve27ZNve6WS9U102_2yCNdkMynuST_rsTjm_VCFZ3UHMWh-yy7a12oJL2UOn4sI7q7M5qGTdywHaaVUX4fC3jtHT7PJxOs9v7q-up5ObXBPGU64orjRmGAMBgzWmqgSgShtDGsqGc2phMDS8KQwzVIChLQiluKB1pZgoyRhdrHSXfbMAowczQXVyGexChU_plZX_J86-yhf_IStecszEIHC8EvAxWRm1TaBftXcOdJK4rIanfUOnv1uCf-8hJrmwUUPXKQe-jxIzRqpSYM4H9GSF6uBjDNCuveBCfucjf_IZuKNN42vqLxDyBYb6iu4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773429188</pqid></control><display><type>article</type><title>Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating</title><source>PubMed Central</source><creator>Murph, Simona E Hunyadi ; Larsen, George K ; Lascola, Robert J</creator><creatorcontrib>Murph, Simona E Hunyadi ; Larsen, George K ; Lascola, Robert J ; Savannah River Site (SRS), Aiken, SC (United States)</creatorcontrib><description>One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl4) to neutral gold Au(0) by reducing agents, such as sodium citrate or sodium borohydride. The extension of this method to decorate iron oxide or similar nanoparticles with gold nanoparticles to create multifunctional hybrid Fe2O3-Au nanoparticles is straightforward. This approach yields fairly good control over Au nanoparticle dimensions and loading onto Fe2O3. Additionally, the Au metal size, shape, and loading can easily be tuned by changing experimental parameters (e.g., reactant concentrations, reducing agents, surfactants, etc.). An advantage of this procedure is that the reaction can be done in air or water, and, in principle, is amenable to scaling up. The use of such optically tunable Fe2O3-Au nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. In addition to its plasmonic effects, nanoscale Au provides a unique surface for interesting chemistries and catalysis. The Fe2O3 material provides additional functionality due to its magnetic property. For example, an external magnetic field could be used to collect and recycle the hybrid Fe2O3-Au nanoparticles after a catalytic experiment, or alternatively, the magnetic Fe2O3 can be used for hyperthermia studies through magnetic heat induction. The photothermal experiment described in this report measures bulk temperature change and nanoparticle solution mass loss as functions of time using infrared thermocouples and a balance, respectively. The ease of sample preparation and the use of readily available equipment are distinct advantages of this technique. A caveat is that these photothermal measurements assess the bulk solution temperature and not the surface of the nanoparticle where the heat is transduced and the temperature is likely to be higher.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/53598</identifier><identifier>PMID: 26967491</identifier><language>eng</language><publisher>United States: MyJoVE Corp</publisher><subject>Chemistry Techniques, Synthetic - methods ; Engineering ; Ferric Compounds - chemistry ; gold ; Gold - chemistry ; Heating ; Hyperthermia, Induced - instrumentation ; iron oxide ; Lasers ; Light ; magnetic material ; Magnetics - methods ; Mass Spectrometry - methods ; Metal Nanoparticles - chemistry ; multifunctional ; NANOSCIENCE AND NANOTECHNOLOGY ; Photochemical Processes ; photothermal ; plasmonics</subject><ispartof>Journal of visualized experiments, 2016-02, Vol.120 (108), p.53598-53598</ispartof><rights>Copyright © 2016, Journal of Visualized Experiments 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a514c1711e3ed1c15a2ee5acdd3b5737969d1eb8b0d7d59ed5fe9aa89564a7923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828179/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828179/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26967491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1240879$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Murph, Simona E Hunyadi</creatorcontrib><creatorcontrib>Larsen, George K</creatorcontrib><creatorcontrib>Lascola, Robert J</creatorcontrib><creatorcontrib>Savannah River Site (SRS), Aiken, SC (United States)</creatorcontrib><title>Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating</title><title>Journal of visualized experiments</title><addtitle>J Vis Exp</addtitle><description>One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl4) to neutral gold Au(0) by reducing agents, such as sodium citrate or sodium borohydride. The extension of this method to decorate iron oxide or similar nanoparticles with gold nanoparticles to create multifunctional hybrid Fe2O3-Au nanoparticles is straightforward. This approach yields fairly good control over Au nanoparticle dimensions and loading onto Fe2O3. Additionally, the Au metal size, shape, and loading can easily be tuned by changing experimental parameters (e.g., reactant concentrations, reducing agents, surfactants, etc.). An advantage of this procedure is that the reaction can be done in air or water, and, in principle, is amenable to scaling up. The use of such optically tunable Fe2O3-Au nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. In addition to its plasmonic effects, nanoscale Au provides a unique surface for interesting chemistries and catalysis. The Fe2O3 material provides additional functionality due to its magnetic property. For example, an external magnetic field could be used to collect and recycle the hybrid Fe2O3-Au nanoparticles after a catalytic experiment, or alternatively, the magnetic Fe2O3 can be used for hyperthermia studies through magnetic heat induction. The photothermal experiment described in this report measures bulk temperature change and nanoparticle solution mass loss as functions of time using infrared thermocouples and a balance, respectively. The ease of sample preparation and the use of readily available equipment are distinct advantages of this technique. A caveat is that these photothermal measurements assess the bulk solution temperature and not the surface of the nanoparticle where the heat is transduced and the temperature is likely to be higher.</description><subject>Chemistry Techniques, Synthetic - methods</subject><subject>Engineering</subject><subject>Ferric Compounds - chemistry</subject><subject>gold</subject><subject>Gold - chemistry</subject><subject>Heating</subject><subject>Hyperthermia, Induced - instrumentation</subject><subject>iron oxide</subject><subject>Lasers</subject><subject>Light</subject><subject>magnetic material</subject><subject>Magnetics - methods</subject><subject>Mass Spectrometry - methods</subject><subject>Metal Nanoparticles - chemistry</subject><subject>multifunctional</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Photochemical Processes</subject><subject>photothermal</subject><subject>plasmonics</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkU9LxDAQxYMouq5-BSmC4KXaNE2TXIRlcV3BfwcFbyFNphrpJmuSCn57q6vLepqB-fHmzTyEDnFxRpjA55RQwbfQCIuqyAvOnrc3-j20H-NbUdRlQfku2itrUbNK4BG6ve27ZNve6WS9U102_2yCNdkMynuST_rsTjm_VCFZ3UHMWh-yy7a12oJL2UOn4sI7q7M5qGTdywHaaVUX4fC3jtHT7PJxOs9v7q-up5ObXBPGU64orjRmGAMBgzWmqgSgShtDGsqGc2phMDS8KQwzVIChLQiluKB1pZgoyRhdrHSXfbMAowczQXVyGexChU_plZX_J86-yhf_IStecszEIHC8EvAxWRm1TaBftXcOdJK4rIanfUOnv1uCf-8hJrmwUUPXKQe-jxIzRqpSYM4H9GSF6uBjDNCuveBCfucjf_IZuKNN42vqLxDyBYb6iu4</recordid><startdate>20160220</startdate><enddate>20160220</enddate><creator>Murph, Simona E Hunyadi</creator><creator>Larsen, George K</creator><creator>Lascola, Robert J</creator><general>MyJoVE Corp</general><general>MyJove Corporation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20160220</creationdate><title>Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating</title><author>Murph, Simona E Hunyadi ; Larsen, George K ; Lascola, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a514c1711e3ed1c15a2ee5acdd3b5737969d1eb8b0d7d59ed5fe9aa89564a7923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemistry Techniques, Synthetic - methods</topic><topic>Engineering</topic><topic>Ferric Compounds - chemistry</topic><topic>gold</topic><topic>Gold - chemistry</topic><topic>Heating</topic><topic>Hyperthermia, Induced - instrumentation</topic><topic>iron oxide</topic><topic>Lasers</topic><topic>Light</topic><topic>magnetic material</topic><topic>Magnetics - methods</topic><topic>Mass Spectrometry - methods</topic><topic>Metal Nanoparticles - chemistry</topic><topic>multifunctional</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Photochemical Processes</topic><topic>photothermal</topic><topic>plasmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murph, Simona E Hunyadi</creatorcontrib><creatorcontrib>Larsen, George K</creatorcontrib><creatorcontrib>Lascola, Robert J</creatorcontrib><creatorcontrib>Savannah River Site (SRS), Aiken, SC (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of visualized experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murph, Simona E Hunyadi</au><au>Larsen, George K</au><au>Lascola, Robert J</au><aucorp>Savannah River Site (SRS), Aiken, SC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating</atitle><jtitle>Journal of visualized experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2016-02-20</date><risdate>2016</risdate><volume>120</volume><issue>108</issue><spage>53598</spage><epage>53598</epage><pages>53598-53598</pages><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl4) to neutral gold Au(0) by reducing agents, such as sodium citrate or sodium borohydride. The extension of this method to decorate iron oxide or similar nanoparticles with gold nanoparticles to create multifunctional hybrid Fe2O3-Au nanoparticles is straightforward. This approach yields fairly good control over Au nanoparticle dimensions and loading onto Fe2O3. Additionally, the Au metal size, shape, and loading can easily be tuned by changing experimental parameters (e.g., reactant concentrations, reducing agents, surfactants, etc.). An advantage of this procedure is that the reaction can be done in air or water, and, in principle, is amenable to scaling up. The use of such optically tunable Fe2O3-Au nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. In addition to its plasmonic effects, nanoscale Au provides a unique surface for interesting chemistries and catalysis. The Fe2O3 material provides additional functionality due to its magnetic property. For example, an external magnetic field could be used to collect and recycle the hybrid Fe2O3-Au nanoparticles after a catalytic experiment, or alternatively, the magnetic Fe2O3 can be used for hyperthermia studies through magnetic heat induction. The photothermal experiment described in this report measures bulk temperature change and nanoparticle solution mass loss as functions of time using infrared thermocouples and a balance, respectively. The ease of sample preparation and the use of readily available equipment are distinct advantages of this technique. A caveat is that these photothermal measurements assess the bulk solution temperature and not the surface of the nanoparticle where the heat is transduced and the temperature is likely to be higher.</abstract><cop>United States</cop><pub>MyJoVE Corp</pub><pmid>26967491</pmid><doi>10.3791/53598</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1940-087X
ispartof Journal of visualized experiments, 2016-02, Vol.120 (108), p.53598-53598
issn 1940-087X
1940-087X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4828179
source PubMed Central
subjects Chemistry Techniques, Synthetic - methods
Engineering
Ferric Compounds - chemistry
gold
Gold - chemistry
Heating
Hyperthermia, Induced - instrumentation
iron oxide
Lasers
Light
magnetic material
Magnetics - methods
Mass Spectrometry - methods
Metal Nanoparticles - chemistry
multifunctional
NANOSCIENCE AND NANOTECHNOLOGY
Photochemical Processes
photothermal
plasmonics
title Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20Hybrid%20Fe2O3-Au%20Nanoparticles%20for%20Efficient%20Plasmonic%20Heating&rft.jtitle=Journal%20of%20visualized%20experiments&rft.au=Murph,%20Simona%20E%20Hunyadi&rft.aucorp=Savannah%20River%20Site%20(SRS),%20Aiken,%20SC%20(United%20States)&rft.date=2016-02-20&rft.volume=120&rft.issue=108&rft.spage=53598&rft.epage=53598&rft.pages=53598-53598&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/53598&rft_dat=%3Cproquest_pubme%3E1773429188%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-a514c1711e3ed1c15a2ee5acdd3b5737969d1eb8b0d7d59ed5fe9aa89564a7923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1773429188&rft_id=info:pmid/26967491&rfr_iscdi=true