Loading…
Fast search algorithms for computational protein design
One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processin...
Saved in:
Published in: | Journal of computational chemistry 2016-05, Vol.37 (12), p.1048-1058 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43 |
container_end_page | 1058 |
container_issue | 12 |
container_start_page | 1048 |
container_title | Journal of computational chemistry |
container_volume | 37 |
creator | Traoré, Seydou Roberts, Kyle E. Allouche, David Donald, Bruce R. André, Isabelle Schiex, Thomas Barbe, Sophie |
description | One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well‐established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of
A* to produce conformations in increasing order of energy, we defined new
A* strategies combining CFN lower bounds, with new side‐chain positioning‐based branching scheme. Beyond the speedups obtained in the new
A*‐CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/
A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc.
Computational protein design (CPD) through Cost Function Networks (CFN) provides important speedups to explore large sequence‐conformation spaces and provably identifies the sequence with the conformation of optimal stability (Global Minimum Energy Conformation, GMEC). In addition to quickly finding the GMEC of highly complex protein design problems, CFN‐based methods also enable the efficient enumeration of suboptimal solutions. These approaches offer an attractive alternative to the usual CPD methods and were implemented in the well‐established CPD package Osprey. |
doi_str_mv | 10.1002/jcc.24290 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4828276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907313623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS0EoiGw4AXQSGxgMe31v2eDVI1ISxXBpojuLMexE4fJONgzhb49LmkDVIKVZfs7516dg9BLDMcYgJxsrD0mjDTwCE0wNKJulLx6jCaAG1IrwfERepbzBgAoF-wpOiJCUSpBTJCcmTxU2Zlk15XpVjGFYb3NlY-psnG7GwczhNibrtqlOLjQV0uXw6p_jp5402X34u6cos-z95fteT3_dPahPZ3XVkADNXasWRAmpfONBA7cYOEpEcSUS2O5tJ5777lyhDLO_BKsxXQBjGPOmGV0it7tfXfjYuuW1vVDMp3epbA16UZHE_TfP31Y61W81kwRRaQoBm_3BusHsvPTub59A6yUoIpf48K-uRuW4rfR5UFvQ7au60zv4pg1lgo4xqykN0WvH6CbOKaSU6EakBRTQeh_KalYMRISfq9oU8w5OX_YE4O-LViXgvWvggv76s88DuR9owU42QPfQ-du_u2kL9r23rLeK0Ie3I-DwqSvWkgquf7y8UzPWiEv6ZXQF_QnMWm7gw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784468670</pqid></control><display><type>article</type><title>Fast search algorithms for computational protein design</title><source>Wiley</source><creator>Traoré, Seydou ; Roberts, Kyle E. ; Allouche, David ; Donald, Bruce R. ; André, Isabelle ; Schiex, Thomas ; Barbe, Sophie</creator><creatorcontrib>Traoré, Seydou ; Roberts, Kyle E. ; Allouche, David ; Donald, Bruce R. ; André, Isabelle ; Schiex, Thomas ; Barbe, Sophie</creatorcontrib><description>One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well‐established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of
A* to produce conformations in increasing order of energy, we defined new
A* strategies combining CFN lower bounds, with new side‐chain positioning‐based branching scheme. Beyond the speedups obtained in the new
A*‐CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/
A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc.
Computational protein design (CPD) through Cost Function Networks (CFN) provides important speedups to explore large sequence‐conformation spaces and provably identifies the sequence with the conformation of optimal stability (Global Minimum Energy Conformation, GMEC). In addition to quickly finding the GMEC of highly complex protein design problems, CFN‐based methods also enable the efficient enumeration of suboptimal solutions. These approaches offer an attractive alternative to the usual CPD methods and were implemented in the well‐established CPD package Osprey.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.24290</identifier><identifier>PMID: 26833706</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Amino Acid Sequence ; Backbone ; Bioinformatics ; Buildings ; Chain branching ; Chains ; Chemical Sciences ; Cheminformatics ; Chemistry ; Combinatorial analysis ; Compounding ; Computational Biology ; computational protein design ; Computer Science ; computer-aided protein design ; Cost function ; cost function networks ; Design ; deterministic search methods ; Drug Design ; Enumeration ; exact combinatorial optimization ; global minimum energy conformation ; Lower bounds ; near-optimal solutions ; Optimization ; Protein Conformation ; Proteins ; Proteins - chemistry ; Search algorithms ; search heuristics ; Searching ; State of the art ; Technology</subject><ispartof>Journal of computational chemistry, 2016-05, Vol.37 (12), p.1048-1058</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. May 5, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43</citedby><cites>FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43</cites><orcidid>0000-0003-3549-4592 ; 0000-0001-6280-4109 ; 0000-0001-6049-3415 ; 0000-0003-2581-5022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26833706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01886385$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Traoré, Seydou</creatorcontrib><creatorcontrib>Roberts, Kyle E.</creatorcontrib><creatorcontrib>Allouche, David</creatorcontrib><creatorcontrib>Donald, Bruce R.</creatorcontrib><creatorcontrib>André, Isabelle</creatorcontrib><creatorcontrib>Schiex, Thomas</creatorcontrib><creatorcontrib>Barbe, Sophie</creatorcontrib><title>Fast search algorithms for computational protein design</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well‐established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of
A* to produce conformations in increasing order of energy, we defined new
A* strategies combining CFN lower bounds, with new side‐chain positioning‐based branching scheme. Beyond the speedups obtained in the new
A*‐CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/
A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc.
Computational protein design (CPD) through Cost Function Networks (CFN) provides important speedups to explore large sequence‐conformation spaces and provably identifies the sequence with the conformation of optimal stability (Global Minimum Energy Conformation, GMEC). In addition to quickly finding the GMEC of highly complex protein design problems, CFN‐based methods also enable the efficient enumeration of suboptimal solutions. These approaches offer an attractive alternative to the usual CPD methods and were implemented in the well‐established CPD package Osprey.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Backbone</subject><subject>Bioinformatics</subject><subject>Buildings</subject><subject>Chain branching</subject><subject>Chains</subject><subject>Chemical Sciences</subject><subject>Cheminformatics</subject><subject>Chemistry</subject><subject>Combinatorial analysis</subject><subject>Compounding</subject><subject>Computational Biology</subject><subject>computational protein design</subject><subject>Computer Science</subject><subject>computer-aided protein design</subject><subject>Cost function</subject><subject>cost function networks</subject><subject>Design</subject><subject>deterministic search methods</subject><subject>Drug Design</subject><subject>Enumeration</subject><subject>exact combinatorial optimization</subject><subject>global minimum energy conformation</subject><subject>Lower bounds</subject><subject>near-optimal solutions</subject><subject>Optimization</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Search algorithms</subject><subject>search heuristics</subject><subject>Searching</subject><subject>State of the art</subject><subject>Technology</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uEzEUhS0EoiGw4AXQSGxgMe31v2eDVI1ISxXBpojuLMexE4fJONgzhb49LmkDVIKVZfs7516dg9BLDMcYgJxsrD0mjDTwCE0wNKJulLx6jCaAG1IrwfERepbzBgAoF-wpOiJCUSpBTJCcmTxU2Zlk15XpVjGFYb3NlY-psnG7GwczhNibrtqlOLjQV0uXw6p_jp5402X34u6cos-z95fteT3_dPahPZ3XVkADNXasWRAmpfONBA7cYOEpEcSUS2O5tJ5777lyhDLO_BKsxXQBjGPOmGV0it7tfXfjYuuW1vVDMp3epbA16UZHE_TfP31Y61W81kwRRaQoBm_3BusHsvPTub59A6yUoIpf48K-uRuW4rfR5UFvQ7au60zv4pg1lgo4xqykN0WvH6CbOKaSU6EakBRTQeh_KalYMRISfq9oU8w5OX_YE4O-LViXgvWvggv76s88DuR9owU42QPfQ-du_u2kL9r23rLeK0Ie3I-DwqSvWkgquf7y8UzPWiEv6ZXQF_QnMWm7gw</recordid><startdate>20160505</startdate><enddate>20160505</enddate><creator>Traoré, Seydou</creator><creator>Roberts, Kyle E.</creator><creator>Allouche, David</creator><creator>Donald, Bruce R.</creator><creator>André, Isabelle</creator><creator>Schiex, Thomas</creator><creator>Barbe, Sophie</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3549-4592</orcidid><orcidid>https://orcid.org/0000-0001-6280-4109</orcidid><orcidid>https://orcid.org/0000-0001-6049-3415</orcidid><orcidid>https://orcid.org/0000-0003-2581-5022</orcidid></search><sort><creationdate>20160505</creationdate><title>Fast search algorithms for computational protein design</title><author>Traoré, Seydou ; Roberts, Kyle E. ; Allouche, David ; Donald, Bruce R. ; André, Isabelle ; Schiex, Thomas ; Barbe, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Backbone</topic><topic>Bioinformatics</topic><topic>Buildings</topic><topic>Chain branching</topic><topic>Chains</topic><topic>Chemical Sciences</topic><topic>Cheminformatics</topic><topic>Chemistry</topic><topic>Combinatorial analysis</topic><topic>Compounding</topic><topic>Computational Biology</topic><topic>computational protein design</topic><topic>Computer Science</topic><topic>computer-aided protein design</topic><topic>Cost function</topic><topic>cost function networks</topic><topic>Design</topic><topic>deterministic search methods</topic><topic>Drug Design</topic><topic>Enumeration</topic><topic>exact combinatorial optimization</topic><topic>global minimum energy conformation</topic><topic>Lower bounds</topic><topic>near-optimal solutions</topic><topic>Optimization</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Search algorithms</topic><topic>search heuristics</topic><topic>Searching</topic><topic>State of the art</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traoré, Seydou</creatorcontrib><creatorcontrib>Roberts, Kyle E.</creatorcontrib><creatorcontrib>Allouche, David</creatorcontrib><creatorcontrib>Donald, Bruce R.</creatorcontrib><creatorcontrib>André, Isabelle</creatorcontrib><creatorcontrib>Schiex, Thomas</creatorcontrib><creatorcontrib>Barbe, Sophie</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traoré, Seydou</au><au>Roberts, Kyle E.</au><au>Allouche, David</au><au>Donald, Bruce R.</au><au>André, Isabelle</au><au>Schiex, Thomas</au><au>Barbe, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast search algorithms for computational protein design</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2016-05-05</date><risdate>2016</risdate><volume>37</volume><issue>12</issue><spage>1048</spage><epage>1058</epage><pages>1048-1058</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well‐established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of
A* to produce conformations in increasing order of energy, we defined new
A* strategies combining CFN lower bounds, with new side‐chain positioning‐based branching scheme. Beyond the speedups obtained in the new
A*‐CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/
A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc.
Computational protein design (CPD) through Cost Function Networks (CFN) provides important speedups to explore large sequence‐conformation spaces and provably identifies the sequence with the conformation of optimal stability (Global Minimum Energy Conformation, GMEC). In addition to quickly finding the GMEC of highly complex protein design problems, CFN‐based methods also enable the efficient enumeration of suboptimal solutions. These approaches offer an attractive alternative to the usual CPD methods and were implemented in the well‐established CPD package Osprey.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26833706</pmid><doi>10.1002/jcc.24290</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3549-4592</orcidid><orcidid>https://orcid.org/0000-0001-6280-4109</orcidid><orcidid>https://orcid.org/0000-0001-6049-3415</orcidid><orcidid>https://orcid.org/0000-0003-2581-5022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2016-05, Vol.37 (12), p.1048-1058 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4828276 |
source | Wiley |
subjects | Algorithms Amino Acid Sequence Backbone Bioinformatics Buildings Chain branching Chains Chemical Sciences Cheminformatics Chemistry Combinatorial analysis Compounding Computational Biology computational protein design Computer Science computer-aided protein design Cost function cost function networks Design deterministic search methods Drug Design Enumeration exact combinatorial optimization global minimum energy conformation Lower bounds near-optimal solutions Optimization Protein Conformation Proteins Proteins - chemistry Search algorithms search heuristics Searching State of the art Technology |
title | Fast search algorithms for computational protein design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20search%20algorithms%20for%20computational%20protein%20design&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Traor%C3%A9,%20Seydou&rft.date=2016-05-05&rft.volume=37&rft.issue=12&rft.spage=1048&rft.epage=1058&rft.pages=1048-1058&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.24290&rft_dat=%3Cproquest_pubme%3E1907313623%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1784468670&rft_id=info:pmid/26833706&rfr_iscdi=true |