Loading…

Fast search algorithms for computational protein design

One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry 2016-05, Vol.37 (12), p.1048-1058
Main Authors: Traoré, Seydou, Roberts, Kyle E., Allouche, David, Donald, Bruce R., André, Isabelle, Schiex, Thomas, Barbe, Sophie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43
cites cdi_FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43
container_end_page 1058
container_issue 12
container_start_page 1048
container_title Journal of computational chemistry
container_volume 37
creator Traoré, Seydou
Roberts, Kyle E.
Allouche, David
Donald, Bruce R.
André, Isabelle
Schiex, Thomas
Barbe, Sophie
description One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well‐established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of A* to produce conformations in increasing order of energy, we defined new A* strategies combining CFN lower bounds, with new side‐chain positioning‐based branching scheme. Beyond the speedups obtained in the new A*‐CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc. Computational protein design (CPD) through Cost Function Networks (CFN) provides important speedups to explore large sequence‐conformation spaces and provably identifies the sequence with the conformation of optimal stability (Global Minimum Energy Conformation, GMEC). In addition to quickly finding the GMEC of highly complex protein design problems, CFN‐based methods also enable the efficient enumeration of suboptimal solutions. These approaches offer an attractive alternative to the usual CPD methods and were implemented in the well‐established CPD package Osprey.
doi_str_mv 10.1002/jcc.24290
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4828276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907313623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS0EoiGw4AXQSGxgMe31v2eDVI1ISxXBpojuLMexE4fJONgzhb49LmkDVIKVZfs7516dg9BLDMcYgJxsrD0mjDTwCE0wNKJulLx6jCaAG1IrwfERepbzBgAoF-wpOiJCUSpBTJCcmTxU2Zlk15XpVjGFYb3NlY-psnG7GwczhNibrtqlOLjQV0uXw6p_jp5402X34u6cos-z95fteT3_dPahPZ3XVkADNXasWRAmpfONBA7cYOEpEcSUS2O5tJ5777lyhDLO_BKsxXQBjGPOmGV0it7tfXfjYuuW1vVDMp3epbA16UZHE_TfP31Y61W81kwRRaQoBm_3BusHsvPTub59A6yUoIpf48K-uRuW4rfR5UFvQ7au60zv4pg1lgo4xqykN0WvH6CbOKaSU6EakBRTQeh_KalYMRISfq9oU8w5OX_YE4O-LViXgvWvggv76s88DuR9owU42QPfQ-du_u2kL9r23rLeK0Ie3I-DwqSvWkgquf7y8UzPWiEv6ZXQF_QnMWm7gw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784468670</pqid></control><display><type>article</type><title>Fast search algorithms for computational protein design</title><source>Wiley</source><creator>Traoré, Seydou ; Roberts, Kyle E. ; Allouche, David ; Donald, Bruce R. ; André, Isabelle ; Schiex, Thomas ; Barbe, Sophie</creator><creatorcontrib>Traoré, Seydou ; Roberts, Kyle E. ; Allouche, David ; Donald, Bruce R. ; André, Isabelle ; Schiex, Thomas ; Barbe, Sophie</creatorcontrib><description>One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well‐established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of A* to produce conformations in increasing order of energy, we defined new A* strategies combining CFN lower bounds, with new side‐chain positioning‐based branching scheme. Beyond the speedups obtained in the new A*‐CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc. Computational protein design (CPD) through Cost Function Networks (CFN) provides important speedups to explore large sequence‐conformation spaces and provably identifies the sequence with the conformation of optimal stability (Global Minimum Energy Conformation, GMEC). In addition to quickly finding the GMEC of highly complex protein design problems, CFN‐based methods also enable the efficient enumeration of suboptimal solutions. These approaches offer an attractive alternative to the usual CPD methods and were implemented in the well‐established CPD package Osprey.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.24290</identifier><identifier>PMID: 26833706</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Amino Acid Sequence ; Backbone ; Bioinformatics ; Buildings ; Chain branching ; Chains ; Chemical Sciences ; Cheminformatics ; Chemistry ; Combinatorial analysis ; Compounding ; Computational Biology ; computational protein design ; Computer Science ; computer-aided protein design ; Cost function ; cost function networks ; Design ; deterministic search methods ; Drug Design ; Enumeration ; exact combinatorial optimization ; global minimum energy conformation ; Lower bounds ; near-optimal solutions ; Optimization ; Protein Conformation ; Proteins ; Proteins - chemistry ; Search algorithms ; search heuristics ; Searching ; State of the art ; Technology</subject><ispartof>Journal of computational chemistry, 2016-05, Vol.37 (12), p.1048-1058</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. May 5, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43</citedby><cites>FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43</cites><orcidid>0000-0003-3549-4592 ; 0000-0001-6280-4109 ; 0000-0001-6049-3415 ; 0000-0003-2581-5022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26833706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01886385$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Traoré, Seydou</creatorcontrib><creatorcontrib>Roberts, Kyle E.</creatorcontrib><creatorcontrib>Allouche, David</creatorcontrib><creatorcontrib>Donald, Bruce R.</creatorcontrib><creatorcontrib>André, Isabelle</creatorcontrib><creatorcontrib>Schiex, Thomas</creatorcontrib><creatorcontrib>Barbe, Sophie</creatorcontrib><title>Fast search algorithms for computational protein design</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well‐established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of A* to produce conformations in increasing order of energy, we defined new A* strategies combining CFN lower bounds, with new side‐chain positioning‐based branching scheme. Beyond the speedups obtained in the new A*‐CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc. Computational protein design (CPD) through Cost Function Networks (CFN) provides important speedups to explore large sequence‐conformation spaces and provably identifies the sequence with the conformation of optimal stability (Global Minimum Energy Conformation, GMEC). In addition to quickly finding the GMEC of highly complex protein design problems, CFN‐based methods also enable the efficient enumeration of suboptimal solutions. These approaches offer an attractive alternative to the usual CPD methods and were implemented in the well‐established CPD package Osprey.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Backbone</subject><subject>Bioinformatics</subject><subject>Buildings</subject><subject>Chain branching</subject><subject>Chains</subject><subject>Chemical Sciences</subject><subject>Cheminformatics</subject><subject>Chemistry</subject><subject>Combinatorial analysis</subject><subject>Compounding</subject><subject>Computational Biology</subject><subject>computational protein design</subject><subject>Computer Science</subject><subject>computer-aided protein design</subject><subject>Cost function</subject><subject>cost function networks</subject><subject>Design</subject><subject>deterministic search methods</subject><subject>Drug Design</subject><subject>Enumeration</subject><subject>exact combinatorial optimization</subject><subject>global minimum energy conformation</subject><subject>Lower bounds</subject><subject>near-optimal solutions</subject><subject>Optimization</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Search algorithms</subject><subject>search heuristics</subject><subject>Searching</subject><subject>State of the art</subject><subject>Technology</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uEzEUhS0EoiGw4AXQSGxgMe31v2eDVI1ISxXBpojuLMexE4fJONgzhb49LmkDVIKVZfs7516dg9BLDMcYgJxsrD0mjDTwCE0wNKJulLx6jCaAG1IrwfERepbzBgAoF-wpOiJCUSpBTJCcmTxU2Zlk15XpVjGFYb3NlY-psnG7GwczhNibrtqlOLjQV0uXw6p_jp5402X34u6cos-z95fteT3_dPahPZ3XVkADNXasWRAmpfONBA7cYOEpEcSUS2O5tJ5777lyhDLO_BKsxXQBjGPOmGV0it7tfXfjYuuW1vVDMp3epbA16UZHE_TfP31Y61W81kwRRaQoBm_3BusHsvPTub59A6yUoIpf48K-uRuW4rfR5UFvQ7au60zv4pg1lgo4xqykN0WvH6CbOKaSU6EakBRTQeh_KalYMRISfq9oU8w5OX_YE4O-LViXgvWvggv76s88DuR9owU42QPfQ-du_u2kL9r23rLeK0Ie3I-DwqSvWkgquf7y8UzPWiEv6ZXQF_QnMWm7gw</recordid><startdate>20160505</startdate><enddate>20160505</enddate><creator>Traoré, Seydou</creator><creator>Roberts, Kyle E.</creator><creator>Allouche, David</creator><creator>Donald, Bruce R.</creator><creator>André, Isabelle</creator><creator>Schiex, Thomas</creator><creator>Barbe, Sophie</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3549-4592</orcidid><orcidid>https://orcid.org/0000-0001-6280-4109</orcidid><orcidid>https://orcid.org/0000-0001-6049-3415</orcidid><orcidid>https://orcid.org/0000-0003-2581-5022</orcidid></search><sort><creationdate>20160505</creationdate><title>Fast search algorithms for computational protein design</title><author>Traoré, Seydou ; Roberts, Kyle E. ; Allouche, David ; Donald, Bruce R. ; André, Isabelle ; Schiex, Thomas ; Barbe, Sophie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Backbone</topic><topic>Bioinformatics</topic><topic>Buildings</topic><topic>Chain branching</topic><topic>Chains</topic><topic>Chemical Sciences</topic><topic>Cheminformatics</topic><topic>Chemistry</topic><topic>Combinatorial analysis</topic><topic>Compounding</topic><topic>Computational Biology</topic><topic>computational protein design</topic><topic>Computer Science</topic><topic>computer-aided protein design</topic><topic>Cost function</topic><topic>cost function networks</topic><topic>Design</topic><topic>deterministic search methods</topic><topic>Drug Design</topic><topic>Enumeration</topic><topic>exact combinatorial optimization</topic><topic>global minimum energy conformation</topic><topic>Lower bounds</topic><topic>near-optimal solutions</topic><topic>Optimization</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Search algorithms</topic><topic>search heuristics</topic><topic>Searching</topic><topic>State of the art</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traoré, Seydou</creatorcontrib><creatorcontrib>Roberts, Kyle E.</creatorcontrib><creatorcontrib>Allouche, David</creatorcontrib><creatorcontrib>Donald, Bruce R.</creatorcontrib><creatorcontrib>André, Isabelle</creatorcontrib><creatorcontrib>Schiex, Thomas</creatorcontrib><creatorcontrib>Barbe, Sophie</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traoré, Seydou</au><au>Roberts, Kyle E.</au><au>Allouche, David</au><au>Donald, Bruce R.</au><au>André, Isabelle</au><au>Schiex, Thomas</au><au>Barbe, Sophie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast search algorithms for computational protein design</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2016-05-05</date><risdate>2016</risdate><volume>37</volume><issue>12</issue><spage>1048</spage><epage>1058</epage><pages>1048-1058</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state‐of‐the‐art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well‐established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of A* to produce conformations in increasing order of energy, we defined new A* strategies combining CFN lower bounds, with new side‐chain positioning‐based branching scheme. Beyond the speedups obtained in the new A*‐CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. © 2016 Wiley Periodicals, Inc. Computational protein design (CPD) through Cost Function Networks (CFN) provides important speedups to explore large sequence‐conformation spaces and provably identifies the sequence with the conformation of optimal stability (Global Minimum Energy Conformation, GMEC). In addition to quickly finding the GMEC of highly complex protein design problems, CFN‐based methods also enable the efficient enumeration of suboptimal solutions. These approaches offer an attractive alternative to the usual CPD methods and were implemented in the well‐established CPD package Osprey.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26833706</pmid><doi>10.1002/jcc.24290</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3549-4592</orcidid><orcidid>https://orcid.org/0000-0001-6280-4109</orcidid><orcidid>https://orcid.org/0000-0001-6049-3415</orcidid><orcidid>https://orcid.org/0000-0003-2581-5022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2016-05, Vol.37 (12), p.1048-1058
issn 0192-8651
1096-987X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4828276
source Wiley
subjects Algorithms
Amino Acid Sequence
Backbone
Bioinformatics
Buildings
Chain branching
Chains
Chemical Sciences
Cheminformatics
Chemistry
Combinatorial analysis
Compounding
Computational Biology
computational protein design
Computer Science
computer-aided protein design
Cost function
cost function networks
Design
deterministic search methods
Drug Design
Enumeration
exact combinatorial optimization
global minimum energy conformation
Lower bounds
near-optimal solutions
Optimization
Protein Conformation
Proteins
Proteins - chemistry
Search algorithms
search heuristics
Searching
State of the art
Technology
title Fast search algorithms for computational protein design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20search%20algorithms%20for%20computational%20protein%20design&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Traor%C3%A9,%20Seydou&rft.date=2016-05-05&rft.volume=37&rft.issue=12&rft.spage=1048&rft.epage=1058&rft.pages=1048-1058&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.24290&rft_dat=%3Cproquest_pubme%3E1907313623%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6090-1e49b2477ef970505a16f3262a0509c57cf5fff58e23454fd0cc13b0451544c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1784468670&rft_id=info:pmid/26833706&rfr_iscdi=true