Loading…
Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells
Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells...
Saved in:
Published in: | Nanoscale research letters 2016-12, Vol.11 (1), p.194-194, Article 194 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c503t-963d3d1df81f4fe27fd8610a107b63cc5c9f4e3dad4f162ae0ecd415c045f21f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c503t-963d3d1df81f4fe27fd8610a107b63cc5c9f4e3dad4f162ae0ecd415c045f21f3 |
container_end_page | 194 |
container_issue | 1 |
container_start_page | 194 |
container_title | Nanoscale research letters |
container_volume | 11 |
creator | Zhou, Suqiong Yang, Zhenhai Gao, Pingqi Li, Xiaofeng Yang, Xi Wang, Dan He, Jian Ying, Zhiqin Ye, Jichun |
description | Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm
2
, which is about 76 % higher than the flat counterpart (22.63 mA/cm
2
) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm
2
). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells. |
doi_str_mv | 10.1186/s11671-016-1397-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4829563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1781152831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-963d3d1df81f4fe27fd8610a107b63cc5c9f4e3dad4f162ae0ecd415c045f21f3</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhhtR3A_9AV4k4MVLa6rTSbovwjC468KghxnRW8jmoydLOmmTnoE5-dfNMOuyCuKpEt6n3lRVqqpeAX4H0LH3GYBxqDGwGkjPa_akOgdKWd1w9v1pOfcEak45Oasucr7DuOWYs-fVWVMisA7Oq5_fpDWpXivpDboJsxmSnF0MKNpy3Zs0G40-yxCnQ5Kj02iRkjxkZGNCC72XQRV95YbtjDZJTpMLA3IBLdMhz9J7FwxaO-9Ucdxsi3Dl_IjW0cuElsb7_KJ6ZqXP5uV9vKy-Xn3cLD_Vqy_XN8vFqlYUk7nuGdFEg7Yd2NaahlvdMcASML9lRCmqetsaoqVuLbBGGmyUboEq3FLbgCWX1YeT77S7HY1WJsxJejElN8p0EFE68acS3FYMcS_arukpI8Xg7b1Bij92Js9idFmVFmQwcZcFdLgrQ205_T_KOwDadAQK-uYv9C7uUiiTOFKl-IYwXCg4USrFnJOxD3UDFsdNEKdNEGUTxHETBCs5rx83_JDx--sL0JyAXKQwmPTo6X-6_gKh0cBF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780452360</pqid></control><display><type>article</type><title>Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Zhou, Suqiong ; Yang, Zhenhai ; Gao, Pingqi ; Li, Xiaofeng ; Yang, Xi ; Wang, Dan ; He, Jian ; Ying, Zhiqin ; Ye, Jichun</creator><creatorcontrib>Zhou, Suqiong ; Yang, Zhenhai ; Gao, Pingqi ; Li, Xiaofeng ; Yang, Xi ; Wang, Dan ; He, Jian ; Ying, Zhiqin ; Ye, Jichun</creatorcontrib><description>Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm
2
, which is about 76 % higher than the flat counterpart (22.63 mA/cm
2
) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm
2
). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells.</description><identifier>ISSN: 1931-7573</identifier><identifier>EISSN: 1556-276X</identifier><identifier>DOI: 10.1186/s11671-016-1397-6</identifier><identifier>PMID: 27071681</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Chemistry and Materials Science ; Crystal structure ; Materials Science ; Molecular Medicine ; Nano Express ; Nanochemistry ; Nanoscale Science and Technology ; Nanostructure ; Nanotechnology ; Nanotechnology and Microengineering ; Photovoltaic cells ; Silicon films ; Solar cells ; Surface chemistry ; Thin films ; Two dimensional</subject><ispartof>Nanoscale research letters, 2016-12, Vol.11 (1), p.194-194, Article 194</ispartof><rights>Zhou et al. 2016</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-963d3d1df81f4fe27fd8610a107b63cc5c9f4e3dad4f162ae0ecd415c045f21f3</citedby><cites>FETCH-LOGICAL-c503t-963d3d1df81f4fe27fd8610a107b63cc5c9f4e3dad4f162ae0ecd415c045f21f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1780452360/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1780452360?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27071681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Suqiong</creatorcontrib><creatorcontrib>Yang, Zhenhai</creatorcontrib><creatorcontrib>Gao, Pingqi</creatorcontrib><creatorcontrib>Li, Xiaofeng</creatorcontrib><creatorcontrib>Yang, Xi</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Ying, Zhiqin</creatorcontrib><creatorcontrib>Ye, Jichun</creatorcontrib><title>Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells</title><title>Nanoscale research letters</title><addtitle>Nanoscale Res Lett</addtitle><addtitle>Nanoscale Res Lett</addtitle><description>Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm
2
, which is about 76 % higher than the flat counterpart (22.63 mA/cm
2
) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm
2
). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells.</description><subject>Arrays</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Materials Science</subject><subject>Molecular Medicine</subject><subject>Nano Express</subject><subject>Nanochemistry</subject><subject>Nanoscale Science and Technology</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Photovoltaic cells</subject><subject>Silicon films</subject><subject>Solar cells</subject><subject>Surface chemistry</subject><subject>Thin films</subject><subject>Two dimensional</subject><issn>1931-7573</issn><issn>1556-276X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkk2LFDEQhhtR3A_9AV4k4MVLa6rTSbovwjC468KghxnRW8jmoydLOmmTnoE5-dfNMOuyCuKpEt6n3lRVqqpeAX4H0LH3GYBxqDGwGkjPa_akOgdKWd1w9v1pOfcEak45Oasucr7DuOWYs-fVWVMisA7Oq5_fpDWpXivpDboJsxmSnF0MKNpy3Zs0G40-yxCnQ5Kj02iRkjxkZGNCC72XQRV95YbtjDZJTpMLA3IBLdMhz9J7FwxaO-9Ucdxsi3Dl_IjW0cuElsb7_KJ6ZqXP5uV9vKy-Xn3cLD_Vqy_XN8vFqlYUk7nuGdFEg7Yd2NaahlvdMcASML9lRCmqetsaoqVuLbBGGmyUboEq3FLbgCWX1YeT77S7HY1WJsxJejElN8p0EFE68acS3FYMcS_arukpI8Xg7b1Bij92Js9idFmVFmQwcZcFdLgrQ205_T_KOwDadAQK-uYv9C7uUiiTOFKl-IYwXCg4USrFnJOxD3UDFsdNEKdNEGUTxHETBCs5rx83_JDx--sL0JyAXKQwmPTo6X-6_gKh0cBF</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Zhou, Suqiong</creator><creator>Yang, Zhenhai</creator><creator>Gao, Pingqi</creator><creator>Li, Xiaofeng</creator><creator>Yang, Xi</creator><creator>Wang, Dan</creator><creator>He, Jian</creator><creator>Ying, Zhiqin</creator><creator>Ye, Jichun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells</title><author>Zhou, Suqiong ; Yang, Zhenhai ; Gao, Pingqi ; Li, Xiaofeng ; Yang, Xi ; Wang, Dan ; He, Jian ; Ying, Zhiqin ; Ye, Jichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-963d3d1df81f4fe27fd8610a107b63cc5c9f4e3dad4f162ae0ecd415c045f21f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arrays</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Materials Science</topic><topic>Molecular Medicine</topic><topic>Nano Express</topic><topic>Nanochemistry</topic><topic>Nanoscale Science and Technology</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Photovoltaic cells</topic><topic>Silicon films</topic><topic>Solar cells</topic><topic>Surface chemistry</topic><topic>Thin films</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Suqiong</creatorcontrib><creatorcontrib>Yang, Zhenhai</creatorcontrib><creatorcontrib>Gao, Pingqi</creatorcontrib><creatorcontrib>Li, Xiaofeng</creatorcontrib><creatorcontrib>Yang, Xi</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Ying, Zhiqin</creatorcontrib><creatorcontrib>Ye, Jichun</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Suqiong</au><au>Yang, Zhenhai</au><au>Gao, Pingqi</au><au>Li, Xiaofeng</au><au>Yang, Xi</au><au>Wang, Dan</au><au>He, Jian</au><au>Ying, Zhiqin</au><au>Ye, Jichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells</atitle><jtitle>Nanoscale research letters</jtitle><stitle>Nanoscale Res Lett</stitle><addtitle>Nanoscale Res Lett</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>194</spage><epage>194</epage><pages>194-194</pages><artnum>194</artnum><issn>1931-7573</issn><eissn>1556-276X</eissn><abstract>Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm
2
, which is about 76 % higher than the flat counterpart (22.63 mA/cm
2
) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm
2
). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27071681</pmid><doi>10.1186/s11671-016-1397-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7573 |
ispartof | Nanoscale research letters, 2016-12, Vol.11 (1), p.194-194, Article 194 |
issn | 1931-7573 1556-276X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4829563 |
source | Publicly Available Content Database; IngentaConnect Journals; PubMed Central |
subjects | Arrays Chemistry and Materials Science Crystal structure Materials Science Molecular Medicine Nano Express Nanochemistry Nanoscale Science and Technology Nanostructure Nanotechnology Nanotechnology and Microengineering Photovoltaic cells Silicon films Solar cells Surface chemistry Thin films Two dimensional |
title | Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wafer-Scale%20Integration%20of%20Inverted%20Nanopyramid%20Arrays%20for%20Advanced%20Light%20Trapping%20in%20Crystalline%20Silicon%20Thin%20Film%20Solar%20Cells&rft.jtitle=Nanoscale%20research%20letters&rft.au=Zhou,%20Suqiong&rft.date=2016-12-01&rft.volume=11&rft.issue=1&rft.spage=194&rft.epage=194&rft.pages=194-194&rft.artnum=194&rft.issn=1931-7573&rft.eissn=1556-276X&rft_id=info:doi/10.1186/s11671-016-1397-6&rft_dat=%3Cproquest_pubme%3E1781152831%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-963d3d1df81f4fe27fd8610a107b63cc5c9f4e3dad4f162ae0ecd415c045f21f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1780452360&rft_id=info:pmid/27071681&rfr_iscdi=true |