Loading…
Increasing Statistical Power in Mediation Models Without Increasing Sample Size
Inadequate statistical power to detect treatment effects in health research is a problem that is compounded when testing for mediation. In general, the preferred strategy for increasing power is to increase the sample size, but there are many situations where additional participants cannot be recrui...
Saved in:
Published in: | Evaluation & the health professions 2015-09, Vol.38 (3), p.343-366 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inadequate statistical power to detect treatment effects in health research is a problem that is compounded when testing for mediation. In general, the preferred strategy for increasing power is to increase the sample size, but there are many situations where additional participants cannot be recruited, necessitating the use of other methods to increase statistical power. Many of these other strategies, commonly applied to analysis of variance and multiple regression models, can be applied to mediation models with similar results. Additional predictors or blocking variables will increase or decrease statistical power, however, depending on whether these variables are related to the mediator, the outcome, or both. The effect of these two methods on the power for tests of mediation is illustrated through the use of simulations. Implications for health researchers using these methods are discussed. |
---|---|
ISSN: | 0163-2787 1552-3918 |
DOI: | 10.1177/0163278713514250 |