Loading…

Effects of User Puff Topography, Device Voltage, and Liquid Nicotine Concentration on Electronic Cigarette Nicotine Yield: Measurements and Model Predictions

Some electronic cigarette (ECIG) users attain tobacco cigarette-like plasma nicotine concentrations while others do not. Understanding the factors that influence ECIG aerosol nicotine delivery is relevant to regulation, including product labeling and abuse liability. These factors may include user p...

Full description

Saved in:
Bibliographic Details
Published in:Nicotine & tobacco research 2015-02, Vol.17 (2), p.150-157
Main Authors: Talih, Soha, Balhas, Zainab, Eissenberg, Thomas, Salman, Rola, Karaoghlanian, Nareg, El Hellani, Ahmad, Baalbaki, Rima, Saliba, Najat, Shihadeh, Alan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-df63195fdb39848c834776677482a8791cca8d4ce6e733c55fbf0d7291d44af03
cites cdi_FETCH-LOGICAL-c466t-df63195fdb39848c834776677482a8791cca8d4ce6e733c55fbf0d7291d44af03
container_end_page 157
container_issue 2
container_start_page 150
container_title Nicotine & tobacco research
container_volume 17
creator Talih, Soha
Balhas, Zainab
Eissenberg, Thomas
Salman, Rola
Karaoghlanian, Nareg
El Hellani, Ahmad
Baalbaki, Rima
Saliba, Najat
Shihadeh, Alan
description Some electronic cigarette (ECIG) users attain tobacco cigarette-like plasma nicotine concentrations while others do not. Understanding the factors that influence ECIG aerosol nicotine delivery is relevant to regulation, including product labeling and abuse liability. These factors may include user puff topography, ECIG liquid composition, and ECIG design features. This study addresses how these factors can influence ECIG nicotine yield. Aerosols were machine generated with 1 type of ECIG cartridge (V4L CoolCart) using 5 distinct puff profiles representing a tobacco cigarette smoker (2-s puff duration, 33-ml/s puff velocity), a slow average ECIG user (4 s, 17 ml/s), a fast average user (4 s, 33 ml/s), a slow extreme user (8 s, 17 ml/s), and a fast extreme user (8 s, 33 ml/s). Output voltage (3.3-5.2 V or 3.0-7.5 W) and e-liquid nicotine concentration (18-36 mg/ml labeled concentration) were varied. A theoretical model was also developed to simulate the ECIG aerosol production process and to provide insight into the empirical observations. Nicotine yields from 15 puffs varied by more than 50-fold across conditions. Experienced ECIG user profiles (longer puffs) resulted in higher nicotine yields relative to the tobacco smoker (shorter puffs). Puff velocity had no effect on nicotine yield. Higher nicotine concentration and higher voltages resulted in higher nicotine yields. These results were predicted well by the theoretical model (R (2) = 0.99). Depending on puff conditions and product features, 15 puffs from an ECIG can provide far less or far more nicotine than a single tobacco cigarette. ECIG emissions can be predicted using physical principles, with knowledge of puff topography and a few ECIG device design parameters.
doi_str_mv 10.1093/ntr/ntu174
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4837998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26768384</jstor_id><sourcerecordid>26768384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-df63195fdb39848c834776677482a8791cca8d4ce6e733c55fbf0d7291d44af03</originalsourceid><addsrcrecordid>eNpVkd1rFDEUxYMotlZffFfyKNLRZJLJx0tB1rUWFvWhFX0K2czNNmV2sk0yhf3vjU4_LNzLvXB_nHvgIPSakg-UaPZxLKn2RCV_gg4pF7rRmv96-m9vm7Yl7AC9yPmKkJZSRZ-jg7ajShJBD9F-6T24knH0-CJDwj8m7_F53MVNsrvL_TH-DDfBAf4Zh2I3cIzt2ONVuJ5Cj78FF0sYAS_i6KDasCXEEddaDlU0xTE4vAgbm6AUeMB_Bxj6l-iZt0OGV7fzCF18WZ4vvjar76dni0-rxnEhStN7wajufL9mWnHlFONSCiElV61VUlPnrOq5AwGSMdd1fu1JL1tNe86tJ-wIncy6u2m9hX72OZhdClub9ibaYB5fxnBpNvHGcMWk1qoKvLsVSPF6glzMNmQHw2BHiFM2VHQt0x1XtKLvZ9SlmHMCf_-GEvM3K1NfmDmrCr_939g9ehdOBd7MwFUuMT3chRSKKc7-AGwInLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652395481</pqid></control><display><type>article</type><title>Effects of User Puff Topography, Device Voltage, and Liquid Nicotine Concentration on Electronic Cigarette Nicotine Yield: Measurements and Model Predictions</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Talih, Soha ; Balhas, Zainab ; Eissenberg, Thomas ; Salman, Rola ; Karaoghlanian, Nareg ; El Hellani, Ahmad ; Baalbaki, Rima ; Saliba, Najat ; Shihadeh, Alan</creator><creatorcontrib>Talih, Soha ; Balhas, Zainab ; Eissenberg, Thomas ; Salman, Rola ; Karaoghlanian, Nareg ; El Hellani, Ahmad ; Baalbaki, Rima ; Saliba, Najat ; Shihadeh, Alan</creatorcontrib><description>Some electronic cigarette (ECIG) users attain tobacco cigarette-like plasma nicotine concentrations while others do not. Understanding the factors that influence ECIG aerosol nicotine delivery is relevant to regulation, including product labeling and abuse liability. These factors may include user puff topography, ECIG liquid composition, and ECIG design features. This study addresses how these factors can influence ECIG nicotine yield. Aerosols were machine generated with 1 type of ECIG cartridge (V4L CoolCart) using 5 distinct puff profiles representing a tobacco cigarette smoker (2-s puff duration, 33-ml/s puff velocity), a slow average ECIG user (4 s, 17 ml/s), a fast average user (4 s, 33 ml/s), a slow extreme user (8 s, 17 ml/s), and a fast extreme user (8 s, 33 ml/s). Output voltage (3.3-5.2 V or 3.0-7.5 W) and e-liquid nicotine concentration (18-36 mg/ml labeled concentration) were varied. A theoretical model was also developed to simulate the ECIG aerosol production process and to provide insight into the empirical observations. Nicotine yields from 15 puffs varied by more than 50-fold across conditions. Experienced ECIG user profiles (longer puffs) resulted in higher nicotine yields relative to the tobacco smoker (shorter puffs). Puff velocity had no effect on nicotine yield. Higher nicotine concentration and higher voltages resulted in higher nicotine yields. These results were predicted well by the theoretical model (R (2) = 0.99). Depending on puff conditions and product features, 15 puffs from an ECIG can provide far less or far more nicotine than a single tobacco cigarette. ECIG emissions can be predicted using physical principles, with knowledge of puff topography and a few ECIG device design parameters.</description><identifier>ISSN: 1462-2203</identifier><identifier>EISSN: 1469-994X</identifier><identifier>DOI: 10.1093/ntr/ntu174</identifier><identifier>PMID: 25187061</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Behavior ; Electronic Nicotine Delivery Systems - instrumentation ; Electronic Nicotine Delivery Systems - psychology ; Equipment Design ; Humans ; Models, Biological ; Nicotine - administration &amp; dosage ; Original Investigation ; Original Investigations ; Product Labeling ; Smoking - psychology</subject><ispartof>Nicotine &amp; tobacco research, 2015-02, Vol.17 (2), p.150-157</ispartof><rights>The Author 2014</rights><rights>The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-df63195fdb39848c834776677482a8791cca8d4ce6e733c55fbf0d7291d44af03</citedby><cites>FETCH-LOGICAL-c466t-df63195fdb39848c834776677482a8791cca8d4ce6e733c55fbf0d7291d44af03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26768384$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26768384$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25187061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Talih, Soha</creatorcontrib><creatorcontrib>Balhas, Zainab</creatorcontrib><creatorcontrib>Eissenberg, Thomas</creatorcontrib><creatorcontrib>Salman, Rola</creatorcontrib><creatorcontrib>Karaoghlanian, Nareg</creatorcontrib><creatorcontrib>El Hellani, Ahmad</creatorcontrib><creatorcontrib>Baalbaki, Rima</creatorcontrib><creatorcontrib>Saliba, Najat</creatorcontrib><creatorcontrib>Shihadeh, Alan</creatorcontrib><title>Effects of User Puff Topography, Device Voltage, and Liquid Nicotine Concentration on Electronic Cigarette Nicotine Yield: Measurements and Model Predictions</title><title>Nicotine &amp; tobacco research</title><addtitle>Nicotine Tob Res</addtitle><description>Some electronic cigarette (ECIG) users attain tobacco cigarette-like plasma nicotine concentrations while others do not. Understanding the factors that influence ECIG aerosol nicotine delivery is relevant to regulation, including product labeling and abuse liability. These factors may include user puff topography, ECIG liquid composition, and ECIG design features. This study addresses how these factors can influence ECIG nicotine yield. Aerosols were machine generated with 1 type of ECIG cartridge (V4L CoolCart) using 5 distinct puff profiles representing a tobacco cigarette smoker (2-s puff duration, 33-ml/s puff velocity), a slow average ECIG user (4 s, 17 ml/s), a fast average user (4 s, 33 ml/s), a slow extreme user (8 s, 17 ml/s), and a fast extreme user (8 s, 33 ml/s). Output voltage (3.3-5.2 V or 3.0-7.5 W) and e-liquid nicotine concentration (18-36 mg/ml labeled concentration) were varied. A theoretical model was also developed to simulate the ECIG aerosol production process and to provide insight into the empirical observations. Nicotine yields from 15 puffs varied by more than 50-fold across conditions. Experienced ECIG user profiles (longer puffs) resulted in higher nicotine yields relative to the tobacco smoker (shorter puffs). Puff velocity had no effect on nicotine yield. Higher nicotine concentration and higher voltages resulted in higher nicotine yields. These results were predicted well by the theoretical model (R (2) = 0.99). Depending on puff conditions and product features, 15 puffs from an ECIG can provide far less or far more nicotine than a single tobacco cigarette. ECIG emissions can be predicted using physical principles, with knowledge of puff topography and a few ECIG device design parameters.</description><subject>Behavior</subject><subject>Electronic Nicotine Delivery Systems - instrumentation</subject><subject>Electronic Nicotine Delivery Systems - psychology</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Nicotine - administration &amp; dosage</subject><subject>Original Investigation</subject><subject>Original Investigations</subject><subject>Product Labeling</subject><subject>Smoking - psychology</subject><issn>1462-2203</issn><issn>1469-994X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpVkd1rFDEUxYMotlZffFfyKNLRZJLJx0tB1rUWFvWhFX0K2czNNmV2sk0yhf3vjU4_LNzLvXB_nHvgIPSakg-UaPZxLKn2RCV_gg4pF7rRmv96-m9vm7Yl7AC9yPmKkJZSRZ-jg7ajShJBD9F-6T24knH0-CJDwj8m7_F53MVNsrvL_TH-DDfBAf4Zh2I3cIzt2ONVuJ5Cj78FF0sYAS_i6KDasCXEEddaDlU0xTE4vAgbm6AUeMB_Bxj6l-iZt0OGV7fzCF18WZ4vvjar76dni0-rxnEhStN7wajufL9mWnHlFONSCiElV61VUlPnrOq5AwGSMdd1fu1JL1tNe86tJ-wIncy6u2m9hX72OZhdClub9ibaYB5fxnBpNvHGcMWk1qoKvLsVSPF6glzMNmQHw2BHiFM2VHQt0x1XtKLvZ9SlmHMCf_-GEvM3K1NfmDmrCr_939g9ehdOBd7MwFUuMT3chRSKKc7-AGwInLQ</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Talih, Soha</creator><creator>Balhas, Zainab</creator><creator>Eissenberg, Thomas</creator><creator>Salman, Rola</creator><creator>Karaoghlanian, Nareg</creator><creator>El Hellani, Ahmad</creator><creator>Baalbaki, Rima</creator><creator>Saliba, Najat</creator><creator>Shihadeh, Alan</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150201</creationdate><title>Effects of User Puff Topography, Device Voltage, and Liquid Nicotine Concentration on Electronic Cigarette Nicotine Yield</title><author>Talih, Soha ; Balhas, Zainab ; Eissenberg, Thomas ; Salman, Rola ; Karaoghlanian, Nareg ; El Hellani, Ahmad ; Baalbaki, Rima ; Saliba, Najat ; Shihadeh, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-df63195fdb39848c834776677482a8791cca8d4ce6e733c55fbf0d7291d44af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Behavior</topic><topic>Electronic Nicotine Delivery Systems - instrumentation</topic><topic>Electronic Nicotine Delivery Systems - psychology</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Nicotine - administration &amp; dosage</topic><topic>Original Investigation</topic><topic>Original Investigations</topic><topic>Product Labeling</topic><topic>Smoking - psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talih, Soha</creatorcontrib><creatorcontrib>Balhas, Zainab</creatorcontrib><creatorcontrib>Eissenberg, Thomas</creatorcontrib><creatorcontrib>Salman, Rola</creatorcontrib><creatorcontrib>Karaoghlanian, Nareg</creatorcontrib><creatorcontrib>El Hellani, Ahmad</creatorcontrib><creatorcontrib>Baalbaki, Rima</creatorcontrib><creatorcontrib>Saliba, Najat</creatorcontrib><creatorcontrib>Shihadeh, Alan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nicotine &amp; tobacco research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talih, Soha</au><au>Balhas, Zainab</au><au>Eissenberg, Thomas</au><au>Salman, Rola</au><au>Karaoghlanian, Nareg</au><au>El Hellani, Ahmad</au><au>Baalbaki, Rima</au><au>Saliba, Najat</au><au>Shihadeh, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of User Puff Topography, Device Voltage, and Liquid Nicotine Concentration on Electronic Cigarette Nicotine Yield: Measurements and Model Predictions</atitle><jtitle>Nicotine &amp; tobacco research</jtitle><addtitle>Nicotine Tob Res</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>17</volume><issue>2</issue><spage>150</spage><epage>157</epage><pages>150-157</pages><issn>1462-2203</issn><eissn>1469-994X</eissn><abstract>Some electronic cigarette (ECIG) users attain tobacco cigarette-like plasma nicotine concentrations while others do not. Understanding the factors that influence ECIG aerosol nicotine delivery is relevant to regulation, including product labeling and abuse liability. These factors may include user puff topography, ECIG liquid composition, and ECIG design features. This study addresses how these factors can influence ECIG nicotine yield. Aerosols were machine generated with 1 type of ECIG cartridge (V4L CoolCart) using 5 distinct puff profiles representing a tobacco cigarette smoker (2-s puff duration, 33-ml/s puff velocity), a slow average ECIG user (4 s, 17 ml/s), a fast average user (4 s, 33 ml/s), a slow extreme user (8 s, 17 ml/s), and a fast extreme user (8 s, 33 ml/s). Output voltage (3.3-5.2 V or 3.0-7.5 W) and e-liquid nicotine concentration (18-36 mg/ml labeled concentration) were varied. A theoretical model was also developed to simulate the ECIG aerosol production process and to provide insight into the empirical observations. Nicotine yields from 15 puffs varied by more than 50-fold across conditions. Experienced ECIG user profiles (longer puffs) resulted in higher nicotine yields relative to the tobacco smoker (shorter puffs). Puff velocity had no effect on nicotine yield. Higher nicotine concentration and higher voltages resulted in higher nicotine yields. These results were predicted well by the theoretical model (R (2) = 0.99). Depending on puff conditions and product features, 15 puffs from an ECIG can provide far less or far more nicotine than a single tobacco cigarette. ECIG emissions can be predicted using physical principles, with knowledge of puff topography and a few ECIG device design parameters.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25187061</pmid><doi>10.1093/ntr/ntu174</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2203
ispartof Nicotine & tobacco research, 2015-02, Vol.17 (2), p.150-157
issn 1462-2203
1469-994X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4837998
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Behavior
Electronic Nicotine Delivery Systems - instrumentation
Electronic Nicotine Delivery Systems - psychology
Equipment Design
Humans
Models, Biological
Nicotine - administration & dosage
Original Investigation
Original Investigations
Product Labeling
Smoking - psychology
title Effects of User Puff Topography, Device Voltage, and Liquid Nicotine Concentration on Electronic Cigarette Nicotine Yield: Measurements and Model Predictions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20User%20Puff%20Topography,%20Device%20Voltage,%20and%20Liquid%20Nicotine%20Concentration%20on%20Electronic%20Cigarette%20Nicotine%20Yield:%20Measurements%20and%20Model%20Predictions&rft.jtitle=Nicotine%20&%20tobacco%20research&rft.au=Talih,%20Soha&rft.date=2015-02-01&rft.volume=17&rft.issue=2&rft.spage=150&rft.epage=157&rft.pages=150-157&rft.issn=1462-2203&rft.eissn=1469-994X&rft_id=info:doi/10.1093/ntr/ntu174&rft_dat=%3Cjstor_pubme%3E26768384%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-df63195fdb39848c834776677482a8791cca8d4ce6e733c55fbf0d7291d44af03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652395481&rft_id=info:pmid/25187061&rft_jstor_id=26768384&rfr_iscdi=true