Loading…

Sensor space group analysis for fNIRS data

•We apply random-effects analysis using summary statistics to fNIRS data.•Individual contrast images are generated in a 2D or 3D canonical scalp surface.•Random-effects analysis then enables inference about population effects.•We show that left frontopolar area is activated in a population during St...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience methods 2016-05, Vol.264, p.103-112
Main Authors: Tak, S., Uga, M., Flandin, G., Dan, I., Penny, W.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-4ea52cfb90827193699fe51f9dd38e841912166a2d5ef9f653a03268d2aea5263
cites cdi_FETCH-LOGICAL-c504t-4ea52cfb90827193699fe51f9dd38e841912166a2d5ef9f653a03268d2aea5263
container_end_page 112
container_issue
container_start_page 103
container_title Journal of neuroscience methods
container_volume 264
creator Tak, S.
Uga, M.
Flandin, G.
Dan, I.
Penny, W.D.
description •We apply random-effects analysis using summary statistics to fNIRS data.•Individual contrast images are generated in a 2D or 3D canonical scalp surface.•Random-effects analysis then enables inference about population effects.•We show that left frontopolar area is activated in a population during Stroop effects.•Results are consistent with previous neuroimaging findings. Functional near-infrared spectroscopy (fNIRS) is a method for monitoring hemoglobin responses using optical probes placed on the scalp. fNIRS spatial resolution is limited by the distance between channels defined as a pair of source and detector, and channel positions are often inconsistent across subjects. These challenges can lead to less accurate estimate of group level effects from channel-specific measurements. This paper addresses this shortcoming by applying random-effects analysis using summary statistics to interpolated fNIRS topographic images. Specifically, we generate individual contrast images containing the experimental effects of interest in a canonical scalp surface. Random-effects analysis then allows for making inference about the regionally specific effects induced by (potentially) multiple experimental factors in a population. We illustrate the approach using experimental data acquired during a colour-word matching Stroop task, and show that left frontopolar regions are significantly activated in a population during Stroop effects. This result agrees with previous neuroimaging findings. The proposed methods (i) address potential misalignment of sensor locations between subjects using spatial interpolation; (ii) produce experimental effects of interest either on a 2D regular grid or on a 3D triangular mesh, both representations of a canonical scalp surface; and (iii) enables one to infer population effects from fNIRS data using a computationally efficient summary statistic approach (random-effects analysis). Significance of regional effects is assessed using random field theory. In this paper, we have shown how fNIRS data from multiple subjects can be analysed in sensor space using random-effects analysis.
doi_str_mv 10.1016/j.jneumeth.2016.03.003
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4840017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027016300097</els_id><sourcerecordid>1781533360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-4ea52cfb90827193699fe51f9dd38e841912166a2d5ef9f653a03268d2aea5263</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMoOj7-gnQpQutN0qbJRhTxBaLgA9yFmN5ohk47Jq3gvzfDqOhKV-FyvnOS3EPILoWCAhUH02La4TjD4aVgaS6AFwB8hUyorFkuavm4SiZJqHJgNWyQzRinAFAqEOtkgwlVMVnWE7J_h13sQxbnxmL2HPpxnpnOtO_Rx8wlwV1f3t5ljRnMNllzpo2483lukYez0_uTi_zq5vzy5PgqtxWUQ16iqZh1Twokq6niQimHFXWqabhEWVJFGRXCsKZCp5youAHOhGyYWTgF3yKHy9z5-DTDxmI3BNPqefAzE951b7z-rXT-RT_3b7qUJQCtU8DeZ0DoX0eMg575aLFtTYf9GDWtFSjOJJT_QCWtOOcCEiqWqA19jAHd94so6EUneqq_OtGLTjRwnTpJxt2f__m2fZWQgKMlgGmrbx6DjtZjZ7HxAe2gm97_dccHYEOfww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781533360</pqid></control><display><type>article</type><title>Sensor space group analysis for fNIRS data</title><source>Elsevier</source><creator>Tak, S. ; Uga, M. ; Flandin, G. ; Dan, I. ; Penny, W.D.</creator><creatorcontrib>Tak, S. ; Uga, M. ; Flandin, G. ; Dan, I. ; Penny, W.D.</creatorcontrib><description>•We apply random-effects analysis using summary statistics to fNIRS data.•Individual contrast images are generated in a 2D or 3D canonical scalp surface.•Random-effects analysis then enables inference about population effects.•We show that left frontopolar area is activated in a population during Stroop effects.•Results are consistent with previous neuroimaging findings. Functional near-infrared spectroscopy (fNIRS) is a method for monitoring hemoglobin responses using optical probes placed on the scalp. fNIRS spatial resolution is limited by the distance between channels defined as a pair of source and detector, and channel positions are often inconsistent across subjects. These challenges can lead to less accurate estimate of group level effects from channel-specific measurements. This paper addresses this shortcoming by applying random-effects analysis using summary statistics to interpolated fNIRS topographic images. Specifically, we generate individual contrast images containing the experimental effects of interest in a canonical scalp surface. Random-effects analysis then allows for making inference about the regionally specific effects induced by (potentially) multiple experimental factors in a population. We illustrate the approach using experimental data acquired during a colour-word matching Stroop task, and show that left frontopolar regions are significantly activated in a population during Stroop effects. This result agrees with previous neuroimaging findings. The proposed methods (i) address potential misalignment of sensor locations between subjects using spatial interpolation; (ii) produce experimental effects of interest either on a 2D regular grid or on a 3D triangular mesh, both representations of a canonical scalp surface; and (iii) enables one to infer population effects from fNIRS data using a computationally efficient summary statistic approach (random-effects analysis). Significance of regional effects is assessed using random field theory. In this paper, we have shown how fNIRS data from multiple subjects can be analysed in sensor space using random-effects analysis.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2016.03.003</identifier><identifier>PMID: 26952847</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Brain Mapping - methods ; Canonical scalp surface ; Executive Function - physiology ; Functional near-infrared spectroscopy ; Humans ; Image Processing, Computer-Assisted - methods ; Prefrontal Cortex - physiology ; Random field theory ; Random-effects analysis ; Sensor space group analysis ; Spectroscopy, Near-Infrared - methods ; Stroop Test</subject><ispartof>Journal of neuroscience methods, 2016-05, Vol.264, p.103-112</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2016 The Authors 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-4ea52cfb90827193699fe51f9dd38e841912166a2d5ef9f653a03268d2aea5263</citedby><cites>FETCH-LOGICAL-c504t-4ea52cfb90827193699fe51f9dd38e841912166a2d5ef9f653a03268d2aea5263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26952847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tak, S.</creatorcontrib><creatorcontrib>Uga, M.</creatorcontrib><creatorcontrib>Flandin, G.</creatorcontrib><creatorcontrib>Dan, I.</creatorcontrib><creatorcontrib>Penny, W.D.</creatorcontrib><title>Sensor space group analysis for fNIRS data</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>•We apply random-effects analysis using summary statistics to fNIRS data.•Individual contrast images are generated in a 2D or 3D canonical scalp surface.•Random-effects analysis then enables inference about population effects.•We show that left frontopolar area is activated in a population during Stroop effects.•Results are consistent with previous neuroimaging findings. Functional near-infrared spectroscopy (fNIRS) is a method for monitoring hemoglobin responses using optical probes placed on the scalp. fNIRS spatial resolution is limited by the distance between channels defined as a pair of source and detector, and channel positions are often inconsistent across subjects. These challenges can lead to less accurate estimate of group level effects from channel-specific measurements. This paper addresses this shortcoming by applying random-effects analysis using summary statistics to interpolated fNIRS topographic images. Specifically, we generate individual contrast images containing the experimental effects of interest in a canonical scalp surface. Random-effects analysis then allows for making inference about the regionally specific effects induced by (potentially) multiple experimental factors in a population. We illustrate the approach using experimental data acquired during a colour-word matching Stroop task, and show that left frontopolar regions are significantly activated in a population during Stroop effects. This result agrees with previous neuroimaging findings. The proposed methods (i) address potential misalignment of sensor locations between subjects using spatial interpolation; (ii) produce experimental effects of interest either on a 2D regular grid or on a 3D triangular mesh, both representations of a canonical scalp surface; and (iii) enables one to infer population effects from fNIRS data using a computationally efficient summary statistic approach (random-effects analysis). Significance of regional effects is assessed using random field theory. In this paper, we have shown how fNIRS data from multiple subjects can be analysed in sensor space using random-effects analysis.</description><subject>Brain Mapping - methods</subject><subject>Canonical scalp surface</subject><subject>Executive Function - physiology</subject><subject>Functional near-infrared spectroscopy</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Prefrontal Cortex - physiology</subject><subject>Random field theory</subject><subject>Random-effects analysis</subject><subject>Sensor space group analysis</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Stroop Test</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLxDAUhYMoOj7-gnQpQutN0qbJRhTxBaLgA9yFmN5ohk47Jq3gvzfDqOhKV-FyvnOS3EPILoWCAhUH02La4TjD4aVgaS6AFwB8hUyorFkuavm4SiZJqHJgNWyQzRinAFAqEOtkgwlVMVnWE7J_h13sQxbnxmL2HPpxnpnOtO_Rx8wlwV1f3t5ljRnMNllzpo2483lukYez0_uTi_zq5vzy5PgqtxWUQ16iqZh1Twokq6niQimHFXWqabhEWVJFGRXCsKZCp5youAHOhGyYWTgF3yKHy9z5-DTDxmI3BNPqefAzE951b7z-rXT-RT_3b7qUJQCtU8DeZ0DoX0eMg575aLFtTYf9GDWtFSjOJJT_QCWtOOcCEiqWqA19jAHd94so6EUneqq_OtGLTjRwnTpJxt2f__m2fZWQgKMlgGmrbx6DjtZjZ7HxAe2gm97_dccHYEOfww</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Tak, S.</creator><creator>Uga, M.</creator><creator>Flandin, G.</creator><creator>Dan, I.</creator><creator>Penny, W.D.</creator><general>Elsevier B.V</general><general>Elsevier/North-Holland Biomedical Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20160501</creationdate><title>Sensor space group analysis for fNIRS data</title><author>Tak, S. ; Uga, M. ; Flandin, G. ; Dan, I. ; Penny, W.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-4ea52cfb90827193699fe51f9dd38e841912166a2d5ef9f653a03268d2aea5263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Brain Mapping - methods</topic><topic>Canonical scalp surface</topic><topic>Executive Function - physiology</topic><topic>Functional near-infrared spectroscopy</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Prefrontal Cortex - physiology</topic><topic>Random field theory</topic><topic>Random-effects analysis</topic><topic>Sensor space group analysis</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Stroop Test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tak, S.</creatorcontrib><creatorcontrib>Uga, M.</creatorcontrib><creatorcontrib>Flandin, G.</creatorcontrib><creatorcontrib>Dan, I.</creatorcontrib><creatorcontrib>Penny, W.D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tak, S.</au><au>Uga, M.</au><au>Flandin, G.</au><au>Dan, I.</au><au>Penny, W.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensor space group analysis for fNIRS data</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>264</volume><spage>103</spage><epage>112</epage><pages>103-112</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>•We apply random-effects analysis using summary statistics to fNIRS data.•Individual contrast images are generated in a 2D or 3D canonical scalp surface.•Random-effects analysis then enables inference about population effects.•We show that left frontopolar area is activated in a population during Stroop effects.•Results are consistent with previous neuroimaging findings. Functional near-infrared spectroscopy (fNIRS) is a method for monitoring hemoglobin responses using optical probes placed on the scalp. fNIRS spatial resolution is limited by the distance between channels defined as a pair of source and detector, and channel positions are often inconsistent across subjects. These challenges can lead to less accurate estimate of group level effects from channel-specific measurements. This paper addresses this shortcoming by applying random-effects analysis using summary statistics to interpolated fNIRS topographic images. Specifically, we generate individual contrast images containing the experimental effects of interest in a canonical scalp surface. Random-effects analysis then allows for making inference about the regionally specific effects induced by (potentially) multiple experimental factors in a population. We illustrate the approach using experimental data acquired during a colour-word matching Stroop task, and show that left frontopolar regions are significantly activated in a population during Stroop effects. This result agrees with previous neuroimaging findings. The proposed methods (i) address potential misalignment of sensor locations between subjects using spatial interpolation; (ii) produce experimental effects of interest either on a 2D regular grid or on a 3D triangular mesh, both representations of a canonical scalp surface; and (iii) enables one to infer population effects from fNIRS data using a computationally efficient summary statistic approach (random-effects analysis). Significance of regional effects is assessed using random field theory. In this paper, we have shown how fNIRS data from multiple subjects can be analysed in sensor space using random-effects analysis.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26952847</pmid><doi>10.1016/j.jneumeth.2016.03.003</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2016-05, Vol.264, p.103-112
issn 0165-0270
1872-678X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4840017
source Elsevier
subjects Brain Mapping - methods
Canonical scalp surface
Executive Function - physiology
Functional near-infrared spectroscopy
Humans
Image Processing, Computer-Assisted - methods
Prefrontal Cortex - physiology
Random field theory
Random-effects analysis
Sensor space group analysis
Spectroscopy, Near-Infrared - methods
Stroop Test
title Sensor space group analysis for fNIRS data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensor%20space%20group%20analysis%20for%20fNIRS%20data&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Tak,%20S.&rft.date=2016-05-01&rft.volume=264&rft.spage=103&rft.epage=112&rft.pages=103-112&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2016.03.003&rft_dat=%3Cproquest_pubme%3E1781533360%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-4ea52cfb90827193699fe51f9dd38e841912166a2d5ef9f653a03268d2aea5263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1781533360&rft_id=info:pmid/26952847&rfr_iscdi=true