Loading…

Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway

Abnormal activation of the Wnt/β-catenin signaling pathway has a significant role in human tumorigenesis. The search for potential anticancer drugs has included widespread screening of inhibitors of the Wnt signaling pathway. Recently, one of the most common flavonoids, apigenin, demonstrated potent...

Full description

Saved in:
Bibliographic Details
Published in:Oncology letters 2016-05, Vol.11 (5), p.3075-3080
Main Authors: XU, MIN, WANG, SHUSHENG, SONG, YU, YAO, JIANHUA, HUANG, KUN, ZHU, XIAOJUE
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abnormal activation of the Wnt/β-catenin signaling pathway has a significant role in human tumorigenesis. The search for potential anticancer drugs has included widespread screening of inhibitors of the Wnt signaling pathway. Recently, one of the most common flavonoids, apigenin, demonstrated potential anti-tumor effects on multiple human cancer cell lines, with low cytotoxicity and no mutagenic activity. However, the association between apigenin and the Wnt/β-catenin signaling pathway remains to be elucidated. The results of wound healing and Transwell invasion assays revealed that apigenin was able to significantly suppress colorectal cancer cell proliferation, migration and invasion in a dose-dependent manner. An organoid culture assay revealed that apigenin was also able to suppress the growth of intestinal organoids. Furthermore, apigenin inhibited β-catenin/T-cell factor/lymphoid enhancer factor signaling activation, which was induced by LiCl in a dose-dependent manner. This inhibited β-catenin nuclear entry, and therefore the expression of Wnt downstream target genes. In conclusion, apigenin significantly suppressed colorectal cancer cell proliferation, migration, invasion and organoid growth by inhibiting the Wnt/β-catenin signaling pathway.
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2016.4331