Loading…
The important tumor suppressor role of PER1 in regulating the cyclin-CDK-CKI network in SCC15 human oral squamous cell carcinoma cells
Accumulating evidence suggests that the abnormal expression of the circadian clock gene PER1 is closely related to the development and progression of cancer. However, the exact molecular mechanism by which the abnormal expression of PER1 induces carcinogenesis is unclear. This study was conducted to...
Saved in:
Published in: | OncoTargets and therapy 2016-01, Vol.9, p.2237-2245 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accumulating evidence suggests that the abnormal expression of the circadian clock gene PER1 is closely related to the development and progression of cancer. However, the exact molecular mechanism by which the abnormal expression of PER1 induces carcinogenesis is unclear. This study was conducted to investigate the alterations in downstream cell cycle genes, cell cycle distribution, cell proliferation, apoptosis, and in vivo tumorigenicity in SCC15 oral squamous cell carcinoma cells after PER1 downregulation.
A stable SCC15 cell line was established to constitutively express shRNA targeting PER1. Quantitative real-time polymerase chain reaction (PCR) and Western blot analyses were conducted to estimate PER1 mRNA and protein expression. The expression of PER1, P53, CyclinD1, CyclinE, CyclinA2, CyclinB1, cyclin-dependent kinase (CDK) 1, CDK2, CDK4, CDK6, P16, P21, WEE1, and CDC25 mRNA was detected by quantitative real-time PCR. Cell cycle distribution, cell proliferation, and apoptosis were determined by flow cytometry. The in vivo tumorigenicity of SCC15 cells was evaluated in female BALB/c nu/nu mice.
PER1 downregulation resulted in significantly increased mRNA expression levels of CyclinD1, CyclinE, CyclinB1, CDK1, and WEE1 (P |
---|---|
ISSN: | 1178-6930 1178-6930 |
DOI: | 10.2147/OTT.S100952 |