Loading…
Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques
The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural ne...
Saved in:
Published in: | SpringerPlus 2016-04, Vol.5 (1), p.539-539, Article 539 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-95e03537349287da8a660e32f0b285a2d82c52e9a62c41331524b996ed40c8893 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-95e03537349287da8a660e32f0b285a2d82c52e9a62c41331524b996ed40c8893 |
container_end_page | 539 |
container_issue | 1 |
container_start_page | 539 |
container_title | SpringerPlus |
container_volume | 5 |
creator | Goo, Yeung-Ja James Chi, Der-Jang Shen, Zong-De |
description | The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO–NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO–CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO–SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %). |
doi_str_mv | 10.1186/s40064-016-2186-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4846611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4035754411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-95e03537349287da8a660e32f0b285a2d82c52e9a62c41331524b996ed40c8893</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhq2qVUHAD-ilstRLL6H-jnOphFBpkVbiAD1bXmd2Y5TYqZ2AUP88DgtoWwlfbM88887YL0KfKDmlVKtvWRCiREWoqli5V_IdOmS04RXVhL7fOx-gk5xvSVmqpqImH9EBq0uFJPwQ_b0cxhTvfNjiqQM8Jmi9m3wMOG7wNi5xF4OD9BS4sf7eBsiAe58naEtuGG3wkPGcF9bi7mGdfLvAq7Pr6yt876cOt3ayePDhqQ24Lvg_M-Rj9GFj-wwnz_sR-n3x4-b8V7W6-nl5fraqXJl2qhoJhEtec9EwXbdWW6UIcLYha6alZa1mTjJorGJOUM6pZGLdNApaQZzWDT9C33e647weoHUQpmR7MyY_2PRgovXm30zwndnGOyO0UIrSIvD1WSDFZfDJDD476PvyF3HOhta6qaXmakG__IfexjmF8ryFEoIRwlih6I5yKeacYPM6DCVmcdfs3DXFXbO4a2Sp-bz_iteKFy8LwHZALqmwhbTX-k3VR77Tr9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784420022</pqid></control><display><type>article</type><title>Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques</title><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Goo, Yeung-Ja James ; Chi, Der-Jang ; Shen, Zong-De</creator><creatorcontrib>Goo, Yeung-Ja James ; Chi, Der-Jang ; Shen, Zong-De</creatorcontrib><description>The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO–NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO–CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO–SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).</description><identifier>ISSN: 2193-1801</identifier><identifier>EISSN: 2193-1801</identifier><identifier>DOI: 10.1186/s40064-016-2186-5</identifier><identifier>PMID: 27186503</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Business and Economics ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>SpringerPlus, 2016-04, Vol.5 (1), p.539-539, Article 539</ispartof><rights>Goo et al. 2016</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-95e03537349287da8a660e32f0b285a2d82c52e9a62c41331524b996ed40c8893</citedby><cites>FETCH-LOGICAL-c470t-95e03537349287da8a660e32f0b285a2d82c52e9a62c41331524b996ed40c8893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846611/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846611/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27186503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goo, Yeung-Ja James</creatorcontrib><creatorcontrib>Chi, Der-Jang</creatorcontrib><creatorcontrib>Shen, Zong-De</creatorcontrib><title>Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques</title><title>SpringerPlus</title><addtitle>SpringerPlus</addtitle><addtitle>Springerplus</addtitle><description>The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO–NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO–CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO–SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).</description><subject>Business and Economics</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2193-1801</issn><issn>2193-1801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhq2qVUHAD-ilstRLL6H-jnOphFBpkVbiAD1bXmd2Y5TYqZ2AUP88DgtoWwlfbM88887YL0KfKDmlVKtvWRCiREWoqli5V_IdOmS04RXVhL7fOx-gk5xvSVmqpqImH9EBq0uFJPwQ_b0cxhTvfNjiqQM8Jmi9m3wMOG7wNi5xF4OD9BS4sf7eBsiAe58naEtuGG3wkPGcF9bi7mGdfLvAq7Pr6yt876cOt3ayePDhqQ24Lvg_M-Rj9GFj-wwnz_sR-n3x4-b8V7W6-nl5fraqXJl2qhoJhEtec9EwXbdWW6UIcLYha6alZa1mTjJorGJOUM6pZGLdNApaQZzWDT9C33e647weoHUQpmR7MyY_2PRgovXm30zwndnGOyO0UIrSIvD1WSDFZfDJDD476PvyF3HOhta6qaXmakG__IfexjmF8ryFEoIRwlih6I5yKeacYPM6DCVmcdfs3DXFXbO4a2Sp-bz_iteKFy8LwHZALqmwhbTX-k3VR77Tr9Q</recordid><startdate>20160427</startdate><enddate>20160427</enddate><creator>Goo, Yeung-Ja James</creator><creator>Chi, Der-Jang</creator><creator>Shen, Zong-De</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160427</creationdate><title>Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques</title><author>Goo, Yeung-Ja James ; Chi, Der-Jang ; Shen, Zong-De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-95e03537349287da8a660e32f0b285a2d82c52e9a62c41331524b996ed40c8893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Business and Economics</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goo, Yeung-Ja James</creatorcontrib><creatorcontrib>Chi, Der-Jang</creatorcontrib><creatorcontrib>Shen, Zong-De</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>SpringerPlus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goo, Yeung-Ja James</au><au>Chi, Der-Jang</au><au>Shen, Zong-De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques</atitle><jtitle>SpringerPlus</jtitle><stitle>SpringerPlus</stitle><addtitle>Springerplus</addtitle><date>2016-04-27</date><risdate>2016</risdate><volume>5</volume><issue>1</issue><spage>539</spage><epage>539</epage><pages>539-539</pages><artnum>539</artnum><issn>2193-1801</issn><eissn>2193-1801</eissn><abstract>The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO–NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO–CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO–SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>27186503</pmid><doi>10.1186/s40064-016-2186-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-1801 |
ispartof | SpringerPlus, 2016-04, Vol.5 (1), p.539-539, Article 539 |
issn | 2193-1801 2193-1801 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4846611 |
source | Springer Nature - SpringerLink Journals - Fully Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Business and Economics Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20prediction%20of%20going%20concern%20of%20Taiwanese%20listed%20companies%20using%20a%20hybrid%20of%20LASSO%20with%20data%20mining%20techniques&rft.jtitle=SpringerPlus&rft.au=Goo,%20Yeung-Ja%20James&rft.date=2016-04-27&rft.volume=5&rft.issue=1&rft.spage=539&rft.epage=539&rft.pages=539-539&rft.artnum=539&rft.issn=2193-1801&rft.eissn=2193-1801&rft_id=info:doi/10.1186/s40064-016-2186-5&rft_dat=%3Cproquest_pubme%3E4035754411%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-95e03537349287da8a660e32f0b285a2d82c52e9a62c41331524b996ed40c8893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1784420022&rft_id=info:pmid/27186503&rfr_iscdi=true |