Loading…

Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles

Bacteria possess innate machinery to transport extracellular cargo between cells as well as package virulence factors to infect host cells by secreting outer membrane vesicles (OMVs) that contain small molecules, proteins and genetic material. These robust proteoliposomes have evolved naturally to b...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-04, Vol.6 (1), p.24866-24866, Article 24866
Main Authors: Alves, Nathan J., Turner, Kendrick B., Medintz, Igor L., Walper, Scott A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-d9124faac9e1a4a4ca32b79dbbae8b499edc63e51b14cee24652799cfedbc8af3
cites cdi_FETCH-LOGICAL-c438t-d9124faac9e1a4a4ca32b79dbbae8b499edc63e51b14cee24652799cfedbc8af3
container_end_page 24866
container_issue 1
container_start_page 24866
container_title Scientific reports
container_volume 6
creator Alves, Nathan J.
Turner, Kendrick B.
Medintz, Igor L.
Walper, Scott A.
description Bacteria possess innate machinery to transport extracellular cargo between cells as well as package virulence factors to infect host cells by secreting outer membrane vesicles (OMVs) that contain small molecules, proteins and genetic material. These robust proteoliposomes have evolved naturally to be resistant to degradation and provide a supportive environment to extend the activity of encapsulated cargo. In this study, we sought to exploit bacterial OMV formation to package and maintain the activity of an enzyme, phosphotriesterase (PTE), under challenging storage conditions encountered for real world applications. Here we show that OMV packaged PTE maintains activity over free PTE when subjected to elevated temperatures (>100-fold more activity after 14 days at 37 °C), iterative freeze-thaw cycles (3.4-fold post four-cycles) and lyophilization (43-fold). We also demonstrate how lyophilized OMV packaged PTE can be utilized as a cell free reagent for long term environmental remediation of pesticide/chemical warfare contaminated areas.
doi_str_mv 10.1038/srep24866
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4846811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1785215961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d9124faac9e1a4a4ca32b79dbbae8b499edc63e51b14cee24652799cfedbc8af3</originalsourceid><addsrcrecordid>eNplkU1r3DAQhkVpaEKSQ_9AEfTSBja1ZNmWLoUS8gWB9JCcxUgee5Xa0kayA8mvr5ZNlk07lxlmHt6Z4SXkMytOWVHKHyniigtZ1x_IAS9EteAl5x936n1ynNJDkaPiSjD1iezzhrGmEeUB0b9jmNBOzvcU_cvzCJOztJt9bgVPp2UMc7-krYsZwpauwP6Bfk07PwVqIHejg4GGORd0xNFE8EifMDk7YDoiex0MCY9f8yG5vzi_O7ta3NxeXp_9ullYUcpp0SrGRQdgFTIQICyU3DSqNQZQGqEUtrYusWKGCYvIRV3xRinbYWushK48JD83uqvZjBlGP0UY9Cq6EeKzDuD0-4l3S92HJy2kqCVjWeDbq0AMjzOmSY8uWRyG_E2Yk2aNrDirVL1Gv_6DPoQ5-vyeZlLJumlqXmTq-4ayMaRsUrc9hhV67ZzeOpfZL7vXb8k3nzJwsgFSHvke487K_9T-Aj56pko</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898677620</pqid></control><display><type>article</type><title>Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles</title><source>PubMed (Medline)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Alves, Nathan J. ; Turner, Kendrick B. ; Medintz, Igor L. ; Walper, Scott A.</creator><creatorcontrib>Alves, Nathan J. ; Turner, Kendrick B. ; Medintz, Igor L. ; Walper, Scott A.</creatorcontrib><description>Bacteria possess innate machinery to transport extracellular cargo between cells as well as package virulence factors to infect host cells by secreting outer membrane vesicles (OMVs) that contain small molecules, proteins and genetic material. These robust proteoliposomes have evolved naturally to be resistant to degradation and provide a supportive environment to extend the activity of encapsulated cargo. In this study, we sought to exploit bacterial OMV formation to package and maintain the activity of an enzyme, phosphotriesterase (PTE), under challenging storage conditions encountered for real world applications. Here we show that OMV packaged PTE maintains activity over free PTE when subjected to elevated temperatures (&gt;100-fold more activity after 14 days at 37 °C), iterative freeze-thaw cycles (3.4-fold post four-cycles) and lyophilization (43-fold). We also demonstrate how lyophilized OMV packaged PTE can be utilized as a cell free reagent for long term environmental remediation of pesticide/chemical warfare contaminated areas.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep24866</identifier><identifier>PMID: 27117743</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/607 ; 631/61/54/1754 ; 82/80 ; Bacteria ; Bacteria - enzymology ; Bacteria - metabolism ; Bacterial vesicles ; Biodegradation ; E coli ; Environmental restoration ; Enzyme Stability ; Enzymes ; Extracellular Vesicles - enzymology ; Freeze Drying ; Freeze-thawing ; Genetic engineering ; Gram-positive bacteria ; Humanities and Social Sciences ; Laboratories ; Membrane vesicles ; multidisciplinary ; Nanoparticles ; Packaging ; Phosphoric Triester Hydrolases - metabolism ; Phosphoric Triester Hydrolases - secretion ; Phosphotriesterase ; Plasmids ; Proteins ; Proteolipids - metabolism ; Science ; Storage conditions ; Temperature ; Time Factors ; Virulence ; Virulence factors</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.24866-24866, Article 24866</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d9124faac9e1a4a4ca32b79dbbae8b499edc63e51b14cee24652799cfedbc8af3</citedby><cites>FETCH-LOGICAL-c438t-d9124faac9e1a4a4ca32b79dbbae8b499edc63e51b14cee24652799cfedbc8af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898677620/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898677620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27117743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alves, Nathan J.</creatorcontrib><creatorcontrib>Turner, Kendrick B.</creatorcontrib><creatorcontrib>Medintz, Igor L.</creatorcontrib><creatorcontrib>Walper, Scott A.</creatorcontrib><title>Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Bacteria possess innate machinery to transport extracellular cargo between cells as well as package virulence factors to infect host cells by secreting outer membrane vesicles (OMVs) that contain small molecules, proteins and genetic material. These robust proteoliposomes have evolved naturally to be resistant to degradation and provide a supportive environment to extend the activity of encapsulated cargo. In this study, we sought to exploit bacterial OMV formation to package and maintain the activity of an enzyme, phosphotriesterase (PTE), under challenging storage conditions encountered for real world applications. Here we show that OMV packaged PTE maintains activity over free PTE when subjected to elevated temperatures (&gt;100-fold more activity after 14 days at 37 °C), iterative freeze-thaw cycles (3.4-fold post four-cycles) and lyophilization (43-fold). We also demonstrate how lyophilized OMV packaged PTE can be utilized as a cell free reagent for long term environmental remediation of pesticide/chemical warfare contaminated areas.</description><subject>631/45/607</subject><subject>631/61/54/1754</subject><subject>82/80</subject><subject>Bacteria</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - metabolism</subject><subject>Bacterial vesicles</subject><subject>Biodegradation</subject><subject>E coli</subject><subject>Environmental restoration</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Extracellular Vesicles - enzymology</subject><subject>Freeze Drying</subject><subject>Freeze-thawing</subject><subject>Genetic engineering</subject><subject>Gram-positive bacteria</subject><subject>Humanities and Social Sciences</subject><subject>Laboratories</subject><subject>Membrane vesicles</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Packaging</subject><subject>Phosphoric Triester Hydrolases - metabolism</subject><subject>Phosphoric Triester Hydrolases - secretion</subject><subject>Phosphotriesterase</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Proteolipids - metabolism</subject><subject>Science</subject><subject>Storage conditions</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Virulence</subject><subject>Virulence factors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkU1r3DAQhkVpaEKSQ_9AEfTSBja1ZNmWLoUS8gWB9JCcxUgee5Xa0kayA8mvr5ZNlk07lxlmHt6Z4SXkMytOWVHKHyniigtZ1x_IAS9EteAl5x936n1ynNJDkaPiSjD1iezzhrGmEeUB0b9jmNBOzvcU_cvzCJOztJt9bgVPp2UMc7-krYsZwpauwP6Bfk07PwVqIHejg4GGORd0xNFE8EifMDk7YDoiex0MCY9f8yG5vzi_O7ta3NxeXp_9ullYUcpp0SrGRQdgFTIQICyU3DSqNQZQGqEUtrYusWKGCYvIRV3xRinbYWushK48JD83uqvZjBlGP0UY9Cq6EeKzDuD0-4l3S92HJy2kqCVjWeDbq0AMjzOmSY8uWRyG_E2Yk2aNrDirVL1Gv_6DPoQ5-vyeZlLJumlqXmTq-4ayMaRsUrc9hhV67ZzeOpfZL7vXb8k3nzJwsgFSHvke487K_9T-Aj56pko</recordid><startdate>20160427</startdate><enddate>20160427</enddate><creator>Alves, Nathan J.</creator><creator>Turner, Kendrick B.</creator><creator>Medintz, Igor L.</creator><creator>Walper, Scott A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160427</creationdate><title>Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles</title><author>Alves, Nathan J. ; Turner, Kendrick B. ; Medintz, Igor L. ; Walper, Scott A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d9124faac9e1a4a4ca32b79dbbae8b499edc63e51b14cee24652799cfedbc8af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/45/607</topic><topic>631/61/54/1754</topic><topic>82/80</topic><topic>Bacteria</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - metabolism</topic><topic>Bacterial vesicles</topic><topic>Biodegradation</topic><topic>E coli</topic><topic>Environmental restoration</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Extracellular Vesicles - enzymology</topic><topic>Freeze Drying</topic><topic>Freeze-thawing</topic><topic>Genetic engineering</topic><topic>Gram-positive bacteria</topic><topic>Humanities and Social Sciences</topic><topic>Laboratories</topic><topic>Membrane vesicles</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Packaging</topic><topic>Phosphoric Triester Hydrolases - metabolism</topic><topic>Phosphoric Triester Hydrolases - secretion</topic><topic>Phosphotriesterase</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Proteolipids - metabolism</topic><topic>Science</topic><topic>Storage conditions</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Virulence</topic><topic>Virulence factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Nathan J.</creatorcontrib><creatorcontrib>Turner, Kendrick B.</creatorcontrib><creatorcontrib>Medintz, Igor L.</creatorcontrib><creatorcontrib>Walper, Scott A.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Nathan J.</au><au>Turner, Kendrick B.</au><au>Medintz, Igor L.</au><au>Walper, Scott A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-27</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>24866</spage><epage>24866</epage><pages>24866-24866</pages><artnum>24866</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Bacteria possess innate machinery to transport extracellular cargo between cells as well as package virulence factors to infect host cells by secreting outer membrane vesicles (OMVs) that contain small molecules, proteins and genetic material. These robust proteoliposomes have evolved naturally to be resistant to degradation and provide a supportive environment to extend the activity of encapsulated cargo. In this study, we sought to exploit bacterial OMV formation to package and maintain the activity of an enzyme, phosphotriesterase (PTE), under challenging storage conditions encountered for real world applications. Here we show that OMV packaged PTE maintains activity over free PTE when subjected to elevated temperatures (&gt;100-fold more activity after 14 days at 37 °C), iterative freeze-thaw cycles (3.4-fold post four-cycles) and lyophilization (43-fold). We also demonstrate how lyophilized OMV packaged PTE can be utilized as a cell free reagent for long term environmental remediation of pesticide/chemical warfare contaminated areas.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27117743</pmid><doi>10.1038/srep24866</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-04, Vol.6 (1), p.24866-24866, Article 24866
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4846811
source PubMed (Medline); Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/607
631/61/54/1754
82/80
Bacteria
Bacteria - enzymology
Bacteria - metabolism
Bacterial vesicles
Biodegradation
E coli
Environmental restoration
Enzyme Stability
Enzymes
Extracellular Vesicles - enzymology
Freeze Drying
Freeze-thawing
Genetic engineering
Gram-positive bacteria
Humanities and Social Sciences
Laboratories
Membrane vesicles
multidisciplinary
Nanoparticles
Packaging
Phosphoric Triester Hydrolases - metabolism
Phosphoric Triester Hydrolases - secretion
Phosphotriesterase
Plasmids
Proteins
Proteolipids - metabolism
Science
Storage conditions
Temperature
Time Factors
Virulence
Virulence factors
title Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protecting%20enzymatic%20function%20through%20directed%20packaging%20into%20bacterial%20outer%20membrane%20vesicles&rft.jtitle=Scientific%20reports&rft.au=Alves,%20Nathan%20J.&rft.date=2016-04-27&rft.volume=6&rft.issue=1&rft.spage=24866&rft.epage=24866&rft.pages=24866-24866&rft.artnum=24866&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep24866&rft_dat=%3Cproquest_pubme%3E1785215961%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-d9124faac9e1a4a4ca32b79dbbae8b499edc63e51b14cee24652799cfedbc8af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898677620&rft_id=info:pmid/27117743&rfr_iscdi=true