Loading…
Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications
We describe a novel method for making microbottle-shaped lasers by using a CO 2 laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO 2 laser power is controlled to flow the doped glass around the sil...
Saved in:
Published in: | Scientific reports 2016-04, Vol.6 (1), p.25152-25152, Article 25152 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-1ec01ac233b6587d268fccc3bcae321f0616269369a1594b21d765f334f428843 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-1ec01ac233b6587d268fccc3bcae321f0616269369a1594b21d765f334f428843 |
container_end_page | 25152 |
container_issue | 1 |
container_start_page | 25152 |
container_title | Scientific reports |
container_volume | 6 |
creator | Ward, Jonathan M. Yang, Yong Nic Chormaic, Síle |
description | We describe a novel method for making microbottle-shaped lasers by using a CO
2
laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO
2
laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting geometry is a hollow, microbottle-shaped resonator. This is a simple method for fabricating a number of glass whispering gallery mode (WGM) lasers with a wide range of sizes on a single, micron-scale structure. The Er:Yb doped glass outer layer is pumped at 980 nm via a tapered optical fibre and WGM lasing is recorded around 1535 nm. This structure facilitates a new way to thermo-optically tune the microlaser modes by passing gas through the capillary. The cooling effect of the gas flow shifts the WGMs towards shorter wavelengths and thermal tuning of the lasing modes over 70 GHz is achieved. Results are fitted using the theory of hot wire anemometry, allowing the flow rate to be calibrated with a flow sensitivity as high as 72 GHz/sccm. Strain tuning of the microlaser modes by up to 60 GHz is also demonstrated. |
doi_str_mv | 10.1038/srep25152 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4848646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1785735076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-1ec01ac233b6587d268fccc3bcae321f0616269369a1594b21d765f334f428843</originalsourceid><addsrcrecordid>eNplkUtLxDAUhYMoKjoL_4AU3KhQ7c2r6UYYxRcoLnxsQ5qmTqWT1KQV_PdmnHEYNZtcOF_OvTcHoT3ITiAj4jR402EGDK-hbZxRlmKC8fpKvYVGIbxl8TBcUCg20RbOAQMw2EYv160KIXU2_S6SK1X6Rqu-cTZxdXLu-r416eNEdaZKngarytYk9432LuLGh0TZKuknpvHJuOvaxdOwizZq1QYzWtw76Pnq8uniJr17uL69GN-lmhLRp2B0BkpjQkrORF5hLmqtNSm1MgRDnXHgmBeEFwpYQUsMVc5ZTQitKRaCkh10NvfthnJqKm1s71UrO99Mlf-UTjXyt2KbiXx1H5IKKjjl0eBwYeDd-2BCL6dN0KZtlTVuCBJywXLCsnyGHvxB39zgbVxPgigEF4Api9TRnIpfFGI29XIYyOQsMLkMLLL7q9MvyZ94InA8B0KU7KvxKy3_uX0BBH-etA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898681245</pqid></control><display><type>article</type><title>Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ward, Jonathan M. ; Yang, Yong ; Nic Chormaic, Síle</creator><creatorcontrib>Ward, Jonathan M. ; Yang, Yong ; Nic Chormaic, Síle</creatorcontrib><description>We describe a novel method for making microbottle-shaped lasers by using a CO
2
laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO
2
laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting geometry is a hollow, microbottle-shaped resonator. This is a simple method for fabricating a number of glass whispering gallery mode (WGM) lasers with a wide range of sizes on a single, micron-scale structure. The Er:Yb doped glass outer layer is pumped at 980 nm via a tapered optical fibre and WGM lasing is recorded around 1535 nm. This structure facilitates a new way to thermo-optically tune the microlaser modes by passing gas through the capillary. The cooling effect of the gas flow shifts the WGMs towards shorter wavelengths and thermal tuning of the lasing modes over 70 GHz is achieved. Results are fitted using the theory of hot wire anemometry, allowing the flow rate to be calibrated with a flow sensitivity as high as 72 GHz/sccm. Strain tuning of the microlaser modes by up to 60 GHz is also demonstrated.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep25152</identifier><identifier>PMID: 27121151</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1083 ; 639/624/1107 ; 639/624/1111/1116 ; 639/624/399/1097 ; Carbon dioxide ; Fabrication ; Flow rates ; Humanities and Social Sciences ; Lasers ; Melting ; Melting point ; multidisciplinary ; Science ; Silica ; Wavelengths</subject><ispartof>Scientific reports, 2016-04, Vol.6 (1), p.25152-25152, Article 25152</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-1ec01ac233b6587d268fccc3bcae321f0616269369a1594b21d765f334f428843</citedby><cites>FETCH-LOGICAL-c438t-1ec01ac233b6587d268fccc3bcae321f0616269369a1594b21d765f334f428843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898681245/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898681245?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27121151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ward, Jonathan M.</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Nic Chormaic, Síle</creatorcontrib><title>Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>We describe a novel method for making microbottle-shaped lasers by using a CO
2
laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO
2
laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting geometry is a hollow, microbottle-shaped resonator. This is a simple method for fabricating a number of glass whispering gallery mode (WGM) lasers with a wide range of sizes on a single, micron-scale structure. The Er:Yb doped glass outer layer is pumped at 980 nm via a tapered optical fibre and WGM lasing is recorded around 1535 nm. This structure facilitates a new way to thermo-optically tune the microlaser modes by passing gas through the capillary. The cooling effect of the gas flow shifts the WGMs towards shorter wavelengths and thermal tuning of the lasing modes over 70 GHz is achieved. Results are fitted using the theory of hot wire anemometry, allowing the flow rate to be calibrated with a flow sensitivity as high as 72 GHz/sccm. Strain tuning of the microlaser modes by up to 60 GHz is also demonstrated.</description><subject>639/624/1075/1083</subject><subject>639/624/1107</subject><subject>639/624/1111/1116</subject><subject>639/624/399/1097</subject><subject>Carbon dioxide</subject><subject>Fabrication</subject><subject>Flow rates</subject><subject>Humanities and Social Sciences</subject><subject>Lasers</subject><subject>Melting</subject><subject>Melting point</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Silica</subject><subject>Wavelengths</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkUtLxDAUhYMoKjoL_4AU3KhQ7c2r6UYYxRcoLnxsQ5qmTqWT1KQV_PdmnHEYNZtcOF_OvTcHoT3ITiAj4jR402EGDK-hbZxRlmKC8fpKvYVGIbxl8TBcUCg20RbOAQMw2EYv160KIXU2_S6SK1X6Rqu-cTZxdXLu-r416eNEdaZKngarytYk9432LuLGh0TZKuknpvHJuOvaxdOwizZq1QYzWtw76Pnq8uniJr17uL69GN-lmhLRp2B0BkpjQkrORF5hLmqtNSm1MgRDnXHgmBeEFwpYQUsMVc5ZTQitKRaCkh10NvfthnJqKm1s71UrO99Mlf-UTjXyt2KbiXx1H5IKKjjl0eBwYeDd-2BCL6dN0KZtlTVuCBJywXLCsnyGHvxB39zgbVxPgigEF4Api9TRnIpfFGI29XIYyOQsMLkMLLL7q9MvyZ94InA8B0KU7KvxKy3_uX0BBH-etA</recordid><startdate>20160428</startdate><enddate>20160428</enddate><creator>Ward, Jonathan M.</creator><creator>Yang, Yong</creator><creator>Nic Chormaic, Síle</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160428</creationdate><title>Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications</title><author>Ward, Jonathan M. ; Yang, Yong ; Nic Chormaic, Síle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-1ec01ac233b6587d268fccc3bcae321f0616269369a1594b21d765f334f428843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/624/1075/1083</topic><topic>639/624/1107</topic><topic>639/624/1111/1116</topic><topic>639/624/399/1097</topic><topic>Carbon dioxide</topic><topic>Fabrication</topic><topic>Flow rates</topic><topic>Humanities and Social Sciences</topic><topic>Lasers</topic><topic>Melting</topic><topic>Melting point</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Silica</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward, Jonathan M.</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Nic Chormaic, Síle</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Jonathan M.</au><au>Yang, Yong</au><au>Nic Chormaic, Síle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-04-28</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>25152</spage><epage>25152</epage><pages>25152-25152</pages><artnum>25152</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We describe a novel method for making microbottle-shaped lasers by using a CO
2
laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO
2
laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting geometry is a hollow, microbottle-shaped resonator. This is a simple method for fabricating a number of glass whispering gallery mode (WGM) lasers with a wide range of sizes on a single, micron-scale structure. The Er:Yb doped glass outer layer is pumped at 980 nm via a tapered optical fibre and WGM lasing is recorded around 1535 nm. This structure facilitates a new way to thermo-optically tune the microlaser modes by passing gas through the capillary. The cooling effect of the gas flow shifts the WGMs towards shorter wavelengths and thermal tuning of the lasing modes over 70 GHz is achieved. Results are fitted using the theory of hot wire anemometry, allowing the flow rate to be calibrated with a flow sensitivity as high as 72 GHz/sccm. Strain tuning of the microlaser modes by up to 60 GHz is also demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27121151</pmid><doi>10.1038/srep25152</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-04, Vol.6 (1), p.25152-25152, Article 25152 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4848646 |
source | Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/1075/1083 639/624/1107 639/624/1111/1116 639/624/399/1097 Carbon dioxide Fabrication Flow rates Humanities and Social Sciences Lasers Melting Melting point multidisciplinary Science Silica Wavelengths |
title | Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glass-on-Glass%20Fabrication%20of%20Bottle-Shaped%20Tunable%20Microlasers%20and%20their%20Applications&rft.jtitle=Scientific%20reports&rft.au=Ward,%20Jonathan%20M.&rft.date=2016-04-28&rft.volume=6&rft.issue=1&rft.spage=25152&rft.epage=25152&rft.pages=25152-25152&rft.artnum=25152&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep25152&rft_dat=%3Cproquest_pubme%3E1785735076%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-1ec01ac233b6587d268fccc3bcae321f0616269369a1594b21d765f334f428843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898681245&rft_id=info:pmid/27121151&rfr_iscdi=true |