Loading…

Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological,...

Full description

Saved in:
Bibliographic Details
Published in:Cold Spring Harbor perspectives in biology 2016-05, Vol.8 (5), p.a029231
Main Authors: Kim, Dorothy M, Nimigean, Crina M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K(+) channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K(+) channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data.
ISSN:1943-0264
1943-0264
DOI:10.1101/cshperspect.a029231