Loading…
The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks
The effect of crack interactions on stress intensity factors is examined for a periodic array of coplanar penny-shaped cracks. Kachanov’s approximate method for crack interactions [Kachanov, M., 1987. Elastic solids with many cracks: a simple method of analysis. International Journal of Solids and S...
Saved in:
Published in: | International journal of solids and structures 2013-01, Vol.50 (1), p.186-200 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c570t-c5196791d27ff3b1f55e41c2ca8f5b17c37cc1b939e2f009bbaf53623080dcee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c570t-c5196791d27ff3b1f55e41c2ca8f5b17c37cc1b939e2f009bbaf53623080dcee3 |
container_end_page | 200 |
container_issue | 1 |
container_start_page | 186 |
container_title | International journal of solids and structures |
container_volume | 50 |
creator | Lekesiz, Huseyin Katsube, Noriko Rokhlin, Stanislav I. Seghi, Robert R. |
description | The effect of crack interactions on stress intensity factors is examined for a periodic array of coplanar penny-shaped cracks. Kachanov’s approximate method for crack interactions [Kachanov, M., 1987. Elastic solids with many cracks: a simple method of analysis. International Journal of Solids and Structures 23 (1), 23–43] is employed to analyze both hexagonal and square crack configurations. In approximating crack interactions, the solution converges when the total truncation number of the cracks is 109. As expected, due to high density packing crack interaction in the hexagonal configuration is stronger than that in the square configuration. Based on the numerical results, convenient fitting equations for quick evaluation of the mode I stress intensity factors are obtained as a function of crack density and angle around the crack edge for both crack configurations. Numerical results for the mode II and III stress intensity factors are presented in the form of contour lines for the case of Poisson’s ratio ν=0.3. Possible errors for these problems due to Kachanov’s approximate method are estimated. Good agreement is observed with the limited number of results available in the literature and obtained by different methods. |
doi_str_mv | 10.1016/j.ijsolstr.2012.09.018 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4862619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768312004027</els_id><sourcerecordid>1283669132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-c5196791d27ff3b1f55e41c2ca8f5b17c37cc1b939e2f009bbaf53623080dcee3</originalsourceid><addsrcrecordid>eNqFkc9vFCEUx4nR2LX6LzQcvcz4gBkYLkbT-Ctp4qUeDWGYR5d1FkaYbbL_vdRtGz31Agnv877w-BBywaBlwOS7XRt2Jc1lzS0HxlvQLbDhGdmwQemGs04-JxsADo2Sgzgjr0rZAUAnNLwkZ1wx1YPoN-Tn9RZpTcFSaIgrxhLWI_XWrSkX6lOmli6YQ5qCozZne6TJ_yVzZUK8oS4ts402VyzGY1O2dsGJulr-VV6TF97OBd_c7-fkx-dP15dfm6vvX75dfrxqXK9grSvTUmk2ceW9GJnve-yY484Ovh-ZckI5x0YtNHIPoMfR-l5ILmCAySGKc_L-lLscxj3Wo7hmO5slh73NR5NsMP9XYtiam3RrukFyyXQNeHsfkNPvA5bV7ENxONfJMB2KYYPopexVp55G-SCk1EzwisoT6nIqJaN_fBEDc6fR7MyDRnOn0YA2VWNtvPh3nse2B28V-HACsP7qbcBsigsYHU4ho1vNlMJTd_wBNpi05g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283669132</pqid></control><display><type>article</type><title>The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks</title><source>Elsevier</source><creator>Lekesiz, Huseyin ; Katsube, Noriko ; Rokhlin, Stanislav I. ; Seghi, Robert R.</creator><creatorcontrib>Lekesiz, Huseyin ; Katsube, Noriko ; Rokhlin, Stanislav I. ; Seghi, Robert R.</creatorcontrib><description>The effect of crack interactions on stress intensity factors is examined for a periodic array of coplanar penny-shaped cracks. Kachanov’s approximate method for crack interactions [Kachanov, M., 1987. Elastic solids with many cracks: a simple method of analysis. International Journal of Solids and Structures 23 (1), 23–43] is employed to analyze both hexagonal and square crack configurations. In approximating crack interactions, the solution converges when the total truncation number of the cracks is 109. As expected, due to high density packing crack interaction in the hexagonal configuration is stronger than that in the square configuration. Based on the numerical results, convenient fitting equations for quick evaluation of the mode I stress intensity factors are obtained as a function of crack density and angle around the crack edge for both crack configurations. Numerical results for the mode II and III stress intensity factors are presented in the form of contour lines for the case of Poisson’s ratio ν=0.3. Possible errors for these problems due to Kachanov’s approximate method are estimated. Good agreement is observed with the limited number of results available in the literature and obtained by different methods.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2012.09.018</identifier><identifier>PMID: 27175035</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Approximation ; Arrays ; Coplanar penny-shaped crack ; Cracks ; Density ; Interacting cracks ; Mathematical analysis ; Mathematical models ; Periodic array ; Shape ; Stress intensity factor</subject><ispartof>International journal of solids and structures, 2013-01, Vol.50 (1), p.186-200</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-c5196791d27ff3b1f55e41c2ca8f5b17c37cc1b939e2f009bbaf53623080dcee3</citedby><cites>FETCH-LOGICAL-c570t-c5196791d27ff3b1f55e41c2ca8f5b17c37cc1b939e2f009bbaf53623080dcee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27175035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lekesiz, Huseyin</creatorcontrib><creatorcontrib>Katsube, Noriko</creatorcontrib><creatorcontrib>Rokhlin, Stanislav I.</creatorcontrib><creatorcontrib>Seghi, Robert R.</creatorcontrib><title>The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks</title><title>International journal of solids and structures</title><addtitle>Int J Solids Struct</addtitle><description>The effect of crack interactions on stress intensity factors is examined for a periodic array of coplanar penny-shaped cracks. Kachanov’s approximate method for crack interactions [Kachanov, M., 1987. Elastic solids with many cracks: a simple method of analysis. International Journal of Solids and Structures 23 (1), 23–43] is employed to analyze both hexagonal and square crack configurations. In approximating crack interactions, the solution converges when the total truncation number of the cracks is 109. As expected, due to high density packing crack interaction in the hexagonal configuration is stronger than that in the square configuration. Based on the numerical results, convenient fitting equations for quick evaluation of the mode I stress intensity factors are obtained as a function of crack density and angle around the crack edge for both crack configurations. Numerical results for the mode II and III stress intensity factors are presented in the form of contour lines for the case of Poisson’s ratio ν=0.3. Possible errors for these problems due to Kachanov’s approximate method are estimated. Good agreement is observed with the limited number of results available in the literature and obtained by different methods.</description><subject>Approximation</subject><subject>Arrays</subject><subject>Coplanar penny-shaped crack</subject><subject>Cracks</subject><subject>Density</subject><subject>Interacting cracks</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Periodic array</subject><subject>Shape</subject><subject>Stress intensity factor</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc9vFCEUx4nR2LX6LzQcvcz4gBkYLkbT-Ctp4qUeDWGYR5d1FkaYbbL_vdRtGz31Agnv877w-BBywaBlwOS7XRt2Jc1lzS0HxlvQLbDhGdmwQemGs04-JxsADo2Sgzgjr0rZAUAnNLwkZ1wx1YPoN-Tn9RZpTcFSaIgrxhLWI_XWrSkX6lOmli6YQ5qCozZne6TJ_yVzZUK8oS4ts402VyzGY1O2dsGJulr-VV6TF97OBd_c7-fkx-dP15dfm6vvX75dfrxqXK9grSvTUmk2ceW9GJnve-yY484Ovh-ZckI5x0YtNHIPoMfR-l5ILmCAySGKc_L-lLscxj3Wo7hmO5slh73NR5NsMP9XYtiam3RrukFyyXQNeHsfkNPvA5bV7ENxONfJMB2KYYPopexVp55G-SCk1EzwisoT6nIqJaN_fBEDc6fR7MyDRnOn0YA2VWNtvPh3nse2B28V-HACsP7qbcBsigsYHU4ho1vNlMJTd_wBNpi05g</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Lekesiz, Huseyin</creator><creator>Katsube, Noriko</creator><creator>Rokhlin, Stanislav I.</creator><creator>Seghi, Robert R.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130101</creationdate><title>The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks</title><author>Lekesiz, Huseyin ; Katsube, Noriko ; Rokhlin, Stanislav I. ; Seghi, Robert R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-c5196791d27ff3b1f55e41c2ca8f5b17c37cc1b939e2f009bbaf53623080dcee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Arrays</topic><topic>Coplanar penny-shaped crack</topic><topic>Cracks</topic><topic>Density</topic><topic>Interacting cracks</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Periodic array</topic><topic>Shape</topic><topic>Stress intensity factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lekesiz, Huseyin</creatorcontrib><creatorcontrib>Katsube, Noriko</creatorcontrib><creatorcontrib>Rokhlin, Stanislav I.</creatorcontrib><creatorcontrib>Seghi, Robert R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lekesiz, Huseyin</au><au>Katsube, Noriko</au><au>Rokhlin, Stanislav I.</au><au>Seghi, Robert R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks</atitle><jtitle>International journal of solids and structures</jtitle><addtitle>Int J Solids Struct</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>50</volume><issue>1</issue><spage>186</spage><epage>200</epage><pages>186-200</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>The effect of crack interactions on stress intensity factors is examined for a periodic array of coplanar penny-shaped cracks. Kachanov’s approximate method for crack interactions [Kachanov, M., 1987. Elastic solids with many cracks: a simple method of analysis. International Journal of Solids and Structures 23 (1), 23–43] is employed to analyze both hexagonal and square crack configurations. In approximating crack interactions, the solution converges when the total truncation number of the cracks is 109. As expected, due to high density packing crack interaction in the hexagonal configuration is stronger than that in the square configuration. Based on the numerical results, convenient fitting equations for quick evaluation of the mode I stress intensity factors are obtained as a function of crack density and angle around the crack edge for both crack configurations. Numerical results for the mode II and III stress intensity factors are presented in the form of contour lines for the case of Poisson’s ratio ν=0.3. Possible errors for these problems due to Kachanov’s approximate method are estimated. Good agreement is observed with the limited number of results available in the literature and obtained by different methods.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27175035</pmid><doi>10.1016/j.ijsolstr.2012.09.018</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2013-01, Vol.50 (1), p.186-200 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4862619 |
source | Elsevier |
subjects | Approximation Arrays Coplanar penny-shaped crack Cracks Density Interacting cracks Mathematical analysis Mathematical models Periodic array Shape Stress intensity factor |
title | The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stress%20intensity%20factors%20for%20a%20periodic%20array%20of%20interacting%20coplanar%20penny-shaped%20cracks&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Lekesiz,%20Huseyin&rft.date=2013-01-01&rft.volume=50&rft.issue=1&rft.spage=186&rft.epage=200&rft.pages=186-200&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2012.09.018&rft_dat=%3Cproquest_pubme%3E1283669132%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-c5196791d27ff3b1f55e41c2ca8f5b17c37cc1b939e2f009bbaf53623080dcee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283669132&rft_id=info:pmid/27175035&rfr_iscdi=true |