Loading…
Genetics and biology of primary ciliary dyskinesia
Summary Ciliopathies are a growing class of disorders caused by abnormal ciliary axonemal structure and function. Our understanding of the complex genetic and functional phenotypes of these conditions has rapidly progressed. Primary ciliary dyskinesia (PCD) remains the sole genetic disorder of motil...
Saved in:
Published in: | Paediatric respiratory reviews 2016-03, Vol.18, p.18-24 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary Ciliopathies are a growing class of disorders caused by abnormal ciliary axonemal structure and function. Our understanding of the complex genetic and functional phenotypes of these conditions has rapidly progressed. Primary ciliary dyskinesia (PCD) remains the sole genetic disorder of motile cilia dysfunction. However, unlike many Mendelian genetic disorders, PCD is not caused by mutations in a single gene or locus, but rather, autosomal recessive mutation in one of many genes that lead to a similar phenotype. The first reported PCD mutations, more than a decade ago, identified genes encoding known structural components of the ciliary axoneme. In recent years, mutations in genes encoding novel cytoplasmic and regulatory proteins have been discovered. These findings have provided new insights into the functions of the motile cilia, and a better understanding of motile cilia disease. Advances in genetic tools will soon allow more precise genetic testing, mandating that clinicians must understand the genetic basis of PCD. Here, we review genetic mutations, their biological impact on cilia structure and function, and the implication of emerging genetic diagnostic tools. |
---|---|
ISSN: | 1526-0542 1526-0550 |
DOI: | 10.1016/j.prrv.2015.09.001 |