Loading…

Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium

Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular...

Full description

Saved in:
Bibliographic Details
Published in:Tissue engineering. Part A 2016-05, Vol.22 (9-10), p.77-720
Main Authors: Senarath-Yapa, Kshemendra, Li, Shuli, Walmsley, Graham G., Zielins, Elizabeth, Paik, Kevin, Britto, Jonathan A., Grigoriadis, Agamemnon E., Wan, Derrick C., Liu, Karen J., Longaker, Michael T., Quarto, Natalina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543
cites cdi_FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543
container_end_page 720
container_issue 9-10
container_start_page 77
container_title Tissue engineering. Part A
container_volume 22
creator Senarath-Yapa, Kshemendra
Li, Shuli
Walmsley, Graham G.
Zielins, Elizabeth
Paik, Kevin
Britto, Jonathan A.
Grigoriadis, Agamemnon E.
Wan, Derrick C.
Liu, Karen J.
Longaker, Michael T.
Quarto, Natalina
description Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFβ) signaling as a potential pathway for pharmacological modulation in vivo . We demonstrate that inhibition of TGFβ signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFβ signaling by producing higher levels of BMP2 that upregulates inhibitory Smad6 expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.
doi_str_mv 10.1089/ten.tea.2015.0527
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4876548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808638436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEoqXwAFyQJS5cdmvHcZxckGDVlkqtimiRuFkTZ7LryrFb21nEU_DKONp2BZx6sDzyfPN7Zv6ieMvoktGmPU7olglhWVImllSU8llxyFouF5yLH8_3ccUOilcx3lJa01rKl8VBKSmvW84Oi9_XI1hLLr1FPVkk525jOpOMd8QP5CaAi4MPo3Frchb8z7Qhp6CTD-QzJiDXZu3AzskTB53FSNIGc9z7NTo_RfINc4ABktki-epzw8mAnaVn8BLG_LsBR1ZgtxDMNL4uXgxgI755uI-K76cnN6svi4urs_PVp4uFFqJOC90PUncca8aZ6MuWodTYirqFhsmhbKVm1SAq1H05dMhbQXNOAu97WtFSVPyo-LjTvZu6EXudGwtg1V0wI4RfyoNR_2ac2ai136qqkbWomizw4UEg-PsJY1KjiRqtBYd5csUa2tS8qXid0ff_obd-CnlxmZJNI0WZ28sU21E6-BgDDvtmGFWz3SpvLx9Qs91qtjvXvPt7in3Fo78ZkDtgfgbnrMEOQ3qC9B_AOL2X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788752505</pqid></control><display><type>article</type><title>Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium</title><source>Mary Ann Liebert Online Subscription</source><creator>Senarath-Yapa, Kshemendra ; Li, Shuli ; Walmsley, Graham G. ; Zielins, Elizabeth ; Paik, Kevin ; Britto, Jonathan A. ; Grigoriadis, Agamemnon E. ; Wan, Derrick C. ; Liu, Karen J. ; Longaker, Michael T. ; Quarto, Natalina</creator><creatorcontrib>Senarath-Yapa, Kshemendra ; Li, Shuli ; Walmsley, Graham G. ; Zielins, Elizabeth ; Paik, Kevin ; Britto, Jonathan A. ; Grigoriadis, Agamemnon E. ; Wan, Derrick C. ; Liu, Karen J. ; Longaker, Michael T. ; Quarto, Natalina</creatorcontrib><description>Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFβ) signaling as a potential pathway for pharmacological modulation in vivo . We demonstrate that inhibition of TGFβ signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFβ signaling by producing higher levels of BMP2 that upregulates inhibitory Smad6 expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2015.0527</identifier><identifier>PMID: 27036931</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Benzamides - pharmacology ; Bone Morphogenetic Protein 2 - biosynthesis ; Bone Regeneration - drug effects ; Bones ; Dioxoles - pharmacology ; Gene Expression Regulation - drug effects ; Growth factors ; Humans ; Mammals ; Mice ; Molecular biology ; Original ; Original Articles ; Osteoblasts - metabolism ; Osteoblasts - pathology ; Signal Transduction - drug effects ; Skull - injuries ; Skull - metabolism ; Skull - pathology ; Smad6 Protein - biosynthesis ; Tissue engineering ; Transforming Growth Factor beta - antagonists &amp; inhibitors ; Transforming Growth Factor beta - metabolism</subject><ispartof>Tissue engineering. Part A, 2016-05, Vol.22 (9-10), p.77-720</ispartof><rights>2016, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2016, Mary Ann Liebert, Inc.</rights><rights>Copyright 2016, Mary Ann Liebert, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543</citedby><cites>FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2015.0527$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2015.0527$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>230,314,780,784,885,3042,21723,27924,27925,55291,55303</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27036931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Senarath-Yapa, Kshemendra</creatorcontrib><creatorcontrib>Li, Shuli</creatorcontrib><creatorcontrib>Walmsley, Graham G.</creatorcontrib><creatorcontrib>Zielins, Elizabeth</creatorcontrib><creatorcontrib>Paik, Kevin</creatorcontrib><creatorcontrib>Britto, Jonathan A.</creatorcontrib><creatorcontrib>Grigoriadis, Agamemnon E.</creatorcontrib><creatorcontrib>Wan, Derrick C.</creatorcontrib><creatorcontrib>Liu, Karen J.</creatorcontrib><creatorcontrib>Longaker, Michael T.</creatorcontrib><creatorcontrib>Quarto, Natalina</creatorcontrib><title>Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFβ) signaling as a potential pathway for pharmacological modulation in vivo . We demonstrate that inhibition of TGFβ signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFβ signaling by producing higher levels of BMP2 that upregulates inhibitory Smad6 expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.</description><subject>Animals</subject><subject>Benzamides - pharmacology</subject><subject>Bone Morphogenetic Protein 2 - biosynthesis</subject><subject>Bone Regeneration - drug effects</subject><subject>Bones</subject><subject>Dioxoles - pharmacology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Mammals</subject><subject>Mice</subject><subject>Molecular biology</subject><subject>Original</subject><subject>Original Articles</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - pathology</subject><subject>Signal Transduction - drug effects</subject><subject>Skull - injuries</subject><subject>Skull - metabolism</subject><subject>Skull - pathology</subject><subject>Smad6 Protein - biosynthesis</subject><subject>Tissue engineering</subject><subject>Transforming Growth Factor beta - antagonists &amp; inhibitors</subject><subject>Transforming Growth Factor beta - metabolism</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhiMEoqXwAFyQJS5cdmvHcZxckGDVlkqtimiRuFkTZ7LryrFb21nEU_DKONp2BZx6sDzyfPN7Zv6ieMvoktGmPU7olglhWVImllSU8llxyFouF5yLH8_3ccUOilcx3lJa01rKl8VBKSmvW84Oi9_XI1hLLr1FPVkk525jOpOMd8QP5CaAi4MPo3Frchb8z7Qhp6CTD-QzJiDXZu3AzskTB53FSNIGc9z7NTo_RfINc4ABktki-epzw8mAnaVn8BLG_LsBR1ZgtxDMNL4uXgxgI755uI-K76cnN6svi4urs_PVp4uFFqJOC90PUncca8aZ6MuWodTYirqFhsmhbKVm1SAq1H05dMhbQXNOAu97WtFSVPyo-LjTvZu6EXudGwtg1V0wI4RfyoNR_2ac2ai136qqkbWomizw4UEg-PsJY1KjiRqtBYd5csUa2tS8qXid0ff_obd-CnlxmZJNI0WZ28sU21E6-BgDDvtmGFWz3SpvLx9Qs91qtjvXvPt7in3Fo78ZkDtgfgbnrMEOQ3qC9B_AOL2X</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Senarath-Yapa, Kshemendra</creator><creator>Li, Shuli</creator><creator>Walmsley, Graham G.</creator><creator>Zielins, Elizabeth</creator><creator>Paik, Kevin</creator><creator>Britto, Jonathan A.</creator><creator>Grigoriadis, Agamemnon E.</creator><creator>Wan, Derrick C.</creator><creator>Liu, Karen J.</creator><creator>Longaker, Michael T.</creator><creator>Quarto, Natalina</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20160501</creationdate><title>Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium</title><author>Senarath-Yapa, Kshemendra ; Li, Shuli ; Walmsley, Graham G. ; Zielins, Elizabeth ; Paik, Kevin ; Britto, Jonathan A. ; Grigoriadis, Agamemnon E. ; Wan, Derrick C. ; Liu, Karen J. ; Longaker, Michael T. ; Quarto, Natalina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Benzamides - pharmacology</topic><topic>Bone Morphogenetic Protein 2 - biosynthesis</topic><topic>Bone Regeneration - drug effects</topic><topic>Bones</topic><topic>Dioxoles - pharmacology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Mammals</topic><topic>Mice</topic><topic>Molecular biology</topic><topic>Original</topic><topic>Original Articles</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - pathology</topic><topic>Signal Transduction - drug effects</topic><topic>Skull - injuries</topic><topic>Skull - metabolism</topic><topic>Skull - pathology</topic><topic>Smad6 Protein - biosynthesis</topic><topic>Tissue engineering</topic><topic>Transforming Growth Factor beta - antagonists &amp; inhibitors</topic><topic>Transforming Growth Factor beta - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senarath-Yapa, Kshemendra</creatorcontrib><creatorcontrib>Li, Shuli</creatorcontrib><creatorcontrib>Walmsley, Graham G.</creatorcontrib><creatorcontrib>Zielins, Elizabeth</creatorcontrib><creatorcontrib>Paik, Kevin</creatorcontrib><creatorcontrib>Britto, Jonathan A.</creatorcontrib><creatorcontrib>Grigoriadis, Agamemnon E.</creatorcontrib><creatorcontrib>Wan, Derrick C.</creatorcontrib><creatorcontrib>Liu, Karen J.</creatorcontrib><creatorcontrib>Longaker, Michael T.</creatorcontrib><creatorcontrib>Quarto, Natalina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senarath-Yapa, Kshemendra</au><au>Li, Shuli</au><au>Walmsley, Graham G.</au><au>Zielins, Elizabeth</au><au>Paik, Kevin</au><au>Britto, Jonathan A.</au><au>Grigoriadis, Agamemnon E.</au><au>Wan, Derrick C.</au><au>Liu, Karen J.</au><au>Longaker, Michael T.</au><au>Quarto, Natalina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>22</volume><issue>9-10</issue><spage>77</spage><epage>720</epage><pages>77-720</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFβ) signaling as a potential pathway for pharmacological modulation in vivo . We demonstrate that inhibition of TGFβ signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFβ signaling by producing higher levels of BMP2 that upregulates inhibitory Smad6 expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>27036931</pmid><doi>10.1089/ten.tea.2015.0527</doi><tpages>644</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-3341
ispartof Tissue engineering. Part A, 2016-05, Vol.22 (9-10), p.77-720
issn 1937-3341
1937-335X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4876548
source Mary Ann Liebert Online Subscription
subjects Animals
Benzamides - pharmacology
Bone Morphogenetic Protein 2 - biosynthesis
Bone Regeneration - drug effects
Bones
Dioxoles - pharmacology
Gene Expression Regulation - drug effects
Growth factors
Humans
Mammals
Mice
Molecular biology
Original
Original Articles
Osteoblasts - metabolism
Osteoblasts - pathology
Signal Transduction - drug effects
Skull - injuries
Skull - metabolism
Skull - pathology
Smad6 Protein - biosynthesis
Tissue engineering
Transforming Growth Factor beta - antagonists & inhibitors
Transforming Growth Factor beta - metabolism
title Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Molecule%20Inhibition%20of%20Transforming%20Growth%20Factor%20Beta%20Signaling%20Enables%20the%20Endogenous%20Regenerative%20Potential%20of%20the%20Mammalian%20Calvarium&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Senarath-Yapa,%20Kshemendra&rft.date=2016-05-01&rft.volume=22&rft.issue=9-10&rft.spage=77&rft.epage=720&rft.pages=77-720&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2015.0527&rft_dat=%3Cproquest_pubme%3E1808638436%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1788752505&rft_id=info:pmid/27036931&rfr_iscdi=true