Loading…
Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium
Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular...
Saved in:
Published in: | Tissue engineering. Part A 2016-05, Vol.22 (9-10), p.77-720 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543 |
---|---|
cites | cdi_FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543 |
container_end_page | 720 |
container_issue | 9-10 |
container_start_page | 77 |
container_title | Tissue engineering. Part A |
container_volume | 22 |
creator | Senarath-Yapa, Kshemendra Li, Shuli Walmsley, Graham G. Zielins, Elizabeth Paik, Kevin Britto, Jonathan A. Grigoriadis, Agamemnon E. Wan, Derrick C. Liu, Karen J. Longaker, Michael T. Quarto, Natalina |
description | Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFβ) signaling as a potential pathway for pharmacological modulation
in vivo
. We demonstrate that inhibition of TGFβ signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFβ signaling by producing higher levels of BMP2 that upregulates inhibitory
Smad6
expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects. |
doi_str_mv | 10.1089/ten.tea.2015.0527 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4876548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808638436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEoqXwAFyQJS5cdmvHcZxckGDVlkqtimiRuFkTZ7LryrFb21nEU_DKONp2BZx6sDzyfPN7Zv6ieMvoktGmPU7olglhWVImllSU8llxyFouF5yLH8_3ccUOilcx3lJa01rKl8VBKSmvW84Oi9_XI1hLLr1FPVkk525jOpOMd8QP5CaAi4MPo3Frchb8z7Qhp6CTD-QzJiDXZu3AzskTB53FSNIGc9z7NTo_RfINc4ABktki-epzw8mAnaVn8BLG_LsBR1ZgtxDMNL4uXgxgI755uI-K76cnN6svi4urs_PVp4uFFqJOC90PUncca8aZ6MuWodTYirqFhsmhbKVm1SAq1H05dMhbQXNOAu97WtFSVPyo-LjTvZu6EXudGwtg1V0wI4RfyoNR_2ac2ai136qqkbWomizw4UEg-PsJY1KjiRqtBYd5csUa2tS8qXid0ff_obd-CnlxmZJNI0WZ28sU21E6-BgDDvtmGFWz3SpvLx9Qs91qtjvXvPt7in3Fo78ZkDtgfgbnrMEOQ3qC9B_AOL2X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788752505</pqid></control><display><type>article</type><title>Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium</title><source>Mary Ann Liebert Online Subscription</source><creator>Senarath-Yapa, Kshemendra ; Li, Shuli ; Walmsley, Graham G. ; Zielins, Elizabeth ; Paik, Kevin ; Britto, Jonathan A. ; Grigoriadis, Agamemnon E. ; Wan, Derrick C. ; Liu, Karen J. ; Longaker, Michael T. ; Quarto, Natalina</creator><creatorcontrib>Senarath-Yapa, Kshemendra ; Li, Shuli ; Walmsley, Graham G. ; Zielins, Elizabeth ; Paik, Kevin ; Britto, Jonathan A. ; Grigoriadis, Agamemnon E. ; Wan, Derrick C. ; Liu, Karen J. ; Longaker, Michael T. ; Quarto, Natalina</creatorcontrib><description>Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFβ) signaling as a potential pathway for pharmacological modulation
in vivo
. We demonstrate that inhibition of TGFβ signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFβ signaling by producing higher levels of BMP2 that upregulates inhibitory
Smad6
expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2015.0527</identifier><identifier>PMID: 27036931</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Benzamides - pharmacology ; Bone Morphogenetic Protein 2 - biosynthesis ; Bone Regeneration - drug effects ; Bones ; Dioxoles - pharmacology ; Gene Expression Regulation - drug effects ; Growth factors ; Humans ; Mammals ; Mice ; Molecular biology ; Original ; Original Articles ; Osteoblasts - metabolism ; Osteoblasts - pathology ; Signal Transduction - drug effects ; Skull - injuries ; Skull - metabolism ; Skull - pathology ; Smad6 Protein - biosynthesis ; Tissue engineering ; Transforming Growth Factor beta - antagonists & inhibitors ; Transforming Growth Factor beta - metabolism</subject><ispartof>Tissue engineering. Part A, 2016-05, Vol.22 (9-10), p.77-720</ispartof><rights>2016, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2016, Mary Ann Liebert, Inc.</rights><rights>Copyright 2016, Mary Ann Liebert, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543</citedby><cites>FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2015.0527$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2015.0527$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>230,314,780,784,885,3042,21723,27924,27925,55291,55303</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27036931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Senarath-Yapa, Kshemendra</creatorcontrib><creatorcontrib>Li, Shuli</creatorcontrib><creatorcontrib>Walmsley, Graham G.</creatorcontrib><creatorcontrib>Zielins, Elizabeth</creatorcontrib><creatorcontrib>Paik, Kevin</creatorcontrib><creatorcontrib>Britto, Jonathan A.</creatorcontrib><creatorcontrib>Grigoriadis, Agamemnon E.</creatorcontrib><creatorcontrib>Wan, Derrick C.</creatorcontrib><creatorcontrib>Liu, Karen J.</creatorcontrib><creatorcontrib>Longaker, Michael T.</creatorcontrib><creatorcontrib>Quarto, Natalina</creatorcontrib><title>Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFβ) signaling as a potential pathway for pharmacological modulation
in vivo
. We demonstrate that inhibition of TGFβ signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFβ signaling by producing higher levels of BMP2 that upregulates inhibitory
Smad6
expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.</description><subject>Animals</subject><subject>Benzamides - pharmacology</subject><subject>Bone Morphogenetic Protein 2 - biosynthesis</subject><subject>Bone Regeneration - drug effects</subject><subject>Bones</subject><subject>Dioxoles - pharmacology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Mammals</subject><subject>Mice</subject><subject>Molecular biology</subject><subject>Original</subject><subject>Original Articles</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - pathology</subject><subject>Signal Transduction - drug effects</subject><subject>Skull - injuries</subject><subject>Skull - metabolism</subject><subject>Skull - pathology</subject><subject>Smad6 Protein - biosynthesis</subject><subject>Tissue engineering</subject><subject>Transforming Growth Factor beta - antagonists & inhibitors</subject><subject>Transforming Growth Factor beta - metabolism</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhiMEoqXwAFyQJS5cdmvHcZxckGDVlkqtimiRuFkTZ7LryrFb21nEU_DKONp2BZx6sDzyfPN7Zv6ieMvoktGmPU7olglhWVImllSU8llxyFouF5yLH8_3ccUOilcx3lJa01rKl8VBKSmvW84Oi9_XI1hLLr1FPVkk525jOpOMd8QP5CaAi4MPo3Frchb8z7Qhp6CTD-QzJiDXZu3AzskTB53FSNIGc9z7NTo_RfINc4ABktki-epzw8mAnaVn8BLG_LsBR1ZgtxDMNL4uXgxgI755uI-K76cnN6svi4urs_PVp4uFFqJOC90PUncca8aZ6MuWodTYirqFhsmhbKVm1SAq1H05dMhbQXNOAu97WtFSVPyo-LjTvZu6EXudGwtg1V0wI4RfyoNR_2ac2ai136qqkbWomizw4UEg-PsJY1KjiRqtBYd5csUa2tS8qXid0ff_obd-CnlxmZJNI0WZ28sU21E6-BgDDvtmGFWz3SpvLx9Qs91qtjvXvPt7in3Fo78ZkDtgfgbnrMEOQ3qC9B_AOL2X</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Senarath-Yapa, Kshemendra</creator><creator>Li, Shuli</creator><creator>Walmsley, Graham G.</creator><creator>Zielins, Elizabeth</creator><creator>Paik, Kevin</creator><creator>Britto, Jonathan A.</creator><creator>Grigoriadis, Agamemnon E.</creator><creator>Wan, Derrick C.</creator><creator>Liu, Karen J.</creator><creator>Longaker, Michael T.</creator><creator>Quarto, Natalina</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20160501</creationdate><title>Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium</title><author>Senarath-Yapa, Kshemendra ; Li, Shuli ; Walmsley, Graham G. ; Zielins, Elizabeth ; Paik, Kevin ; Britto, Jonathan A. ; Grigoriadis, Agamemnon E. ; Wan, Derrick C. ; Liu, Karen J. ; Longaker, Michael T. ; Quarto, Natalina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Benzamides - pharmacology</topic><topic>Bone Morphogenetic Protein 2 - biosynthesis</topic><topic>Bone Regeneration - drug effects</topic><topic>Bones</topic><topic>Dioxoles - pharmacology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Mammals</topic><topic>Mice</topic><topic>Molecular biology</topic><topic>Original</topic><topic>Original Articles</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - pathology</topic><topic>Signal Transduction - drug effects</topic><topic>Skull - injuries</topic><topic>Skull - metabolism</topic><topic>Skull - pathology</topic><topic>Smad6 Protein - biosynthesis</topic><topic>Tissue engineering</topic><topic>Transforming Growth Factor beta - antagonists & inhibitors</topic><topic>Transforming Growth Factor beta - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senarath-Yapa, Kshemendra</creatorcontrib><creatorcontrib>Li, Shuli</creatorcontrib><creatorcontrib>Walmsley, Graham G.</creatorcontrib><creatorcontrib>Zielins, Elizabeth</creatorcontrib><creatorcontrib>Paik, Kevin</creatorcontrib><creatorcontrib>Britto, Jonathan A.</creatorcontrib><creatorcontrib>Grigoriadis, Agamemnon E.</creatorcontrib><creatorcontrib>Wan, Derrick C.</creatorcontrib><creatorcontrib>Liu, Karen J.</creatorcontrib><creatorcontrib>Longaker, Michael T.</creatorcontrib><creatorcontrib>Quarto, Natalina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senarath-Yapa, Kshemendra</au><au>Li, Shuli</au><au>Walmsley, Graham G.</au><au>Zielins, Elizabeth</au><au>Paik, Kevin</au><au>Britto, Jonathan A.</au><au>Grigoriadis, Agamemnon E.</au><au>Wan, Derrick C.</au><au>Liu, Karen J.</au><au>Longaker, Michael T.</au><au>Quarto, Natalina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>22</volume><issue>9-10</issue><spage>77</spage><epage>720</epage><pages>77-720</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFβ) signaling as a potential pathway for pharmacological modulation
in vivo
. We demonstrate that inhibition of TGFβ signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFβ signaling by producing higher levels of BMP2 that upregulates inhibitory
Smad6
expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>27036931</pmid><doi>10.1089/ten.tea.2015.0527</doi><tpages>644</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2016-05, Vol.22 (9-10), p.77-720 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4876548 |
source | Mary Ann Liebert Online Subscription |
subjects | Animals Benzamides - pharmacology Bone Morphogenetic Protein 2 - biosynthesis Bone Regeneration - drug effects Bones Dioxoles - pharmacology Gene Expression Regulation - drug effects Growth factors Humans Mammals Mice Molecular biology Original Original Articles Osteoblasts - metabolism Osteoblasts - pathology Signal Transduction - drug effects Skull - injuries Skull - metabolism Skull - pathology Smad6 Protein - biosynthesis Tissue engineering Transforming Growth Factor beta - antagonists & inhibitors Transforming Growth Factor beta - metabolism |
title | Small Molecule Inhibition of Transforming Growth Factor Beta Signaling Enables the Endogenous Regenerative Potential of the Mammalian Calvarium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Molecule%20Inhibition%20of%20Transforming%20Growth%20Factor%20Beta%20Signaling%20Enables%20the%20Endogenous%20Regenerative%20Potential%20of%20the%20Mammalian%20Calvarium&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Senarath-Yapa,%20Kshemendra&rft.date=2016-05-01&rft.volume=22&rft.issue=9-10&rft.spage=77&rft.epage=720&rft.pages=77-720&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2015.0527&rft_dat=%3Cproquest_pubme%3E1808638436%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-cdf7cb3e61315d291e7ce9569a817f297c14f54ecd2fbe39505697a3dd0402543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1788752505&rft_id=info:pmid/27036931&rfr_iscdi=true |