Loading…

Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

•We present atomic-detail visualization of cellular processes responsible for photosynthesis in purple bacteria.•We describe parallel rendering approaches used to facilitate high-fidelity visualizations of 100M-atom photosynthetic membrane complexes.•We present an improved GPU-accelerated ray tracin...

Full description

Saved in:
Bibliographic Details
Published in:Parallel computing 2016-07, Vol.55 (C), p.17-27
Main Authors: Stone, John E., Sener, Melih, Vandivort, Kirby L., Barragan, Angela, Singharoy, Abhishek, Teo, Ivan, Ribeiro, João V., Isralewitz, Barry, Liu, Bo, Goh, Boon Chong, Phillips, James C., MacGregor-Chatwin, Craig, Johnson, Matthew P., Kourkoutis, Lena F., Hunter, C. Neil, Schulten, Klaus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c519t-af0ad56ea882da3d83d2c5222f3e0ba969ca5b989dc1de406be218c9d91444623
cites cdi_FETCH-LOGICAL-c519t-af0ad56ea882da3d83d2c5222f3e0ba969ca5b989dc1de406be218c9d91444623
container_end_page 27
container_issue C
container_start_page 17
container_title Parallel computing
container_volume 55
creator Stone, John E.
Sener, Melih
Vandivort, Kirby L.
Barragan, Angela
Singharoy, Abhishek
Teo, Ivan
Ribeiro, João V.
Isralewitz, Barry
Liu, Bo
Goh, Boon Chong
Phillips, James C.
MacGregor-Chatwin, Craig
Johnson, Matthew P.
Kourkoutis, Lena F.
Hunter, C. Neil
Schulten, Klaus
description •We present atomic-detail visualization of cellular processes responsible for photosynthesis in purple bacteria.•We describe parallel rendering approaches used to facilitate high-fidelity visualizations of 100M-atom photosynthetic membrane complexes.•We present an improved GPU-accelerated ray tracing engine optimized to enable high performance rendering of very large molecular scenes, yielding performance increases up to a factor of 1.46x vs. previously published results.•Unique ray tracing features for stereoscopic panoramic and omnidirectional projections required for planetariums and other so-called “full-dome” theater environments are described with example images.•VMD interactive ray tracing preview via progressive rendering allows visualizations and movies to be designed using full-quality lighting and shading, while remaining fully interactive, and supporting preview with head-mounted displays such as the Oculus Rift. The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.
doi_str_mv 10.1016/j.parco.2015.10.015
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4890717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167819115001593</els_id><sourcerecordid>1825540189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-af0ad56ea882da3d83d2c5222f3e0ba969ca5b989dc1de406be218c9d91444623</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhFyChiBOXLP5I_HEAqapKQarUHqjEzXLsSeNVEi-2d9H21-OwpYIL4jTSzDMf77wIvSZ4TTDh7zfrrYk2rCkmbcmsS3iCVkQKWgvG-FO0KpSoJVHkBL1IaYMx5o3Ez9EJFVQ0HLMV-naWw-Rt5SAbP1Z7n3Zm9Pcm-zBXoa-2Q8ghHeY8QC7YBFMXzQyp-uHzUF3e3NbGWhghmgyuiuZQ5Wisn-9eome9GRO8eoin6PbTxdfzz_XV9eWX87Or2rZE5dr02LiWg5GSOsOcZI7allLaM8CdUVxZ03ZKKmeJgwbzDiiRVjlFmqbhlJ2ij8e52103gbMwlwNGvY1-MvGgg_H678rsB30X9rqRCgsiyoC3xwEhZa-T9RnsYMM8g82aMEEwbgv07mFLDN93kLKefCq6x_KLsEuaSMq5wq0S_4O2bYOJVAVlR9TGkFKE_vFsgvXisd7oXx7rxeMlWULpevOn4see36YW4MMRgPL3vYe4qILZgvNxEeWC_-eCn05nup4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825540189</pqid></control><display><type>article</type><title>Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing</title><source>ScienceDirect Journals</source><creator>Stone, John E. ; Sener, Melih ; Vandivort, Kirby L. ; Barragan, Angela ; Singharoy, Abhishek ; Teo, Ivan ; Ribeiro, João V. ; Isralewitz, Barry ; Liu, Bo ; Goh, Boon Chong ; Phillips, James C. ; MacGregor-Chatwin, Craig ; Johnson, Matthew P. ; Kourkoutis, Lena F. ; Hunter, C. Neil ; Schulten, Klaus</creator><creatorcontrib>Stone, John E. ; Sener, Melih ; Vandivort, Kirby L. ; Barragan, Angela ; Singharoy, Abhishek ; Teo, Ivan ; Ribeiro, João V. ; Isralewitz, Barry ; Liu, Bo ; Goh, Boon Chong ; Phillips, James C. ; MacGregor-Chatwin, Craig ; Johnson, Matthew P. ; Kourkoutis, Lena F. ; Hunter, C. Neil ; Schulten, Klaus ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</creatorcontrib><description>•We present atomic-detail visualization of cellular processes responsible for photosynthesis in purple bacteria.•We describe parallel rendering approaches used to facilitate high-fidelity visualizations of 100M-atom photosynthetic membrane complexes.•We present an improved GPU-accelerated ray tracing engine optimized to enable high performance rendering of very large molecular scenes, yielding performance increases up to a factor of 1.46x vs. previously published results.•Unique ray tracing features for stereoscopic panoramic and omnidirectional projections required for planetariums and other so-called “full-dome” theater environments are described with example images.•VMD interactive ray tracing preview via progressive rendering allows visualizations and movies to be designed using full-quality lighting and shading, while remaining fully interactive, and supporting preview with head-mounted displays such as the Oculus Rift. The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.</description><identifier>ISSN: 0167-8191</identifier><identifier>EISSN: 1872-7336</identifier><identifier>DOI: 10.1016/j.parco.2015.10.015</identifier><identifier>PMID: 27274603</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>60 APPLIED LIFE SCIENCES ; Bacteria ; bio-inspired ; biofuels (including algae and biomass) ; charge transport ; Computation ; Computer simulation ; Construction ; Cooperation ; GPU computing ; Mathematical models ; MATHEMATICS AND COMPUTING ; membrane ; Parallel molecular dynamics ; Parallel ray tracing ; Photosynthesis ; photosynthesis (natural and artificial) ; solar (fuels) ; synthesis (novel materials) ; synthesis (self-assembly) ; Visualization</subject><ispartof>Parallel computing, 2016-07, Vol.55 (C), p.17-27</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-af0ad56ea882da3d83d2c5222f3e0ba969ca5b989dc1de406be218c9d91444623</citedby><cites>FETCH-LOGICAL-c519t-af0ad56ea882da3d83d2c5222f3e0ba969ca5b989dc1de406be218c9d91444623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27274603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1371005$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stone, John E.</creatorcontrib><creatorcontrib>Sener, Melih</creatorcontrib><creatorcontrib>Vandivort, Kirby L.</creatorcontrib><creatorcontrib>Barragan, Angela</creatorcontrib><creatorcontrib>Singharoy, Abhishek</creatorcontrib><creatorcontrib>Teo, Ivan</creatorcontrib><creatorcontrib>Ribeiro, João V.</creatorcontrib><creatorcontrib>Isralewitz, Barry</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Goh, Boon Chong</creatorcontrib><creatorcontrib>Phillips, James C.</creatorcontrib><creatorcontrib>MacGregor-Chatwin, Craig</creatorcontrib><creatorcontrib>Johnson, Matthew P.</creatorcontrib><creatorcontrib>Kourkoutis, Lena F.</creatorcontrib><creatorcontrib>Hunter, C. Neil</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</creatorcontrib><title>Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing</title><title>Parallel computing</title><addtitle>Parallel Comput</addtitle><description>•We present atomic-detail visualization of cellular processes responsible for photosynthesis in purple bacteria.•We describe parallel rendering approaches used to facilitate high-fidelity visualizations of 100M-atom photosynthetic membrane complexes.•We present an improved GPU-accelerated ray tracing engine optimized to enable high performance rendering of very large molecular scenes, yielding performance increases up to a factor of 1.46x vs. previously published results.•Unique ray tracing features for stereoscopic panoramic and omnidirectional projections required for planetariums and other so-called “full-dome” theater environments are described with example images.•VMD interactive ray tracing preview via progressive rendering allows visualizations and movies to be designed using full-quality lighting and shading, while remaining fully interactive, and supporting preview with head-mounted displays such as the Oculus Rift. The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Bacteria</subject><subject>bio-inspired</subject><subject>biofuels (including algae and biomass)</subject><subject>charge transport</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Cooperation</subject><subject>GPU computing</subject><subject>Mathematical models</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>membrane</subject><subject>Parallel molecular dynamics</subject><subject>Parallel ray tracing</subject><subject>Photosynthesis</subject><subject>photosynthesis (natural and artificial)</subject><subject>solar (fuels)</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><subject>Visualization</subject><issn>0167-8191</issn><issn>1872-7336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EokvhFyChiBOXLP5I_HEAqapKQarUHqjEzXLsSeNVEi-2d9H21-OwpYIL4jTSzDMf77wIvSZ4TTDh7zfrrYk2rCkmbcmsS3iCVkQKWgvG-FO0KpSoJVHkBL1IaYMx5o3Ez9EJFVQ0HLMV-naWw-Rt5SAbP1Z7n3Zm9Pcm-zBXoa-2Q8ghHeY8QC7YBFMXzQyp-uHzUF3e3NbGWhghmgyuiuZQ5Wisn-9eome9GRO8eoin6PbTxdfzz_XV9eWX87Or2rZE5dr02LiWg5GSOsOcZI7allLaM8CdUVxZ03ZKKmeJgwbzDiiRVjlFmqbhlJ2ij8e52103gbMwlwNGvY1-MvGgg_H678rsB30X9rqRCgsiyoC3xwEhZa-T9RnsYMM8g82aMEEwbgv07mFLDN93kLKefCq6x_KLsEuaSMq5wq0S_4O2bYOJVAVlR9TGkFKE_vFsgvXisd7oXx7rxeMlWULpevOn4see36YW4MMRgPL3vYe4qILZgvNxEeWC_-eCn05nup4</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Stone, John E.</creator><creator>Sener, Melih</creator><creator>Vandivort, Kirby L.</creator><creator>Barragan, Angela</creator><creator>Singharoy, Abhishek</creator><creator>Teo, Ivan</creator><creator>Ribeiro, João V.</creator><creator>Isralewitz, Barry</creator><creator>Liu, Bo</creator><creator>Goh, Boon Chong</creator><creator>Phillips, James C.</creator><creator>MacGregor-Chatwin, Craig</creator><creator>Johnson, Matthew P.</creator><creator>Kourkoutis, Lena F.</creator><creator>Hunter, C. Neil</creator><creator>Schulten, Klaus</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201607</creationdate><title>Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing</title><author>Stone, John E. ; Sener, Melih ; Vandivort, Kirby L. ; Barragan, Angela ; Singharoy, Abhishek ; Teo, Ivan ; Ribeiro, João V. ; Isralewitz, Barry ; Liu, Bo ; Goh, Boon Chong ; Phillips, James C. ; MacGregor-Chatwin, Craig ; Johnson, Matthew P. ; Kourkoutis, Lena F. ; Hunter, C. Neil ; Schulten, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-af0ad56ea882da3d83d2c5222f3e0ba969ca5b989dc1de406be218c9d91444623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Bacteria</topic><topic>bio-inspired</topic><topic>biofuels (including algae and biomass)</topic><topic>charge transport</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Cooperation</topic><topic>GPU computing</topic><topic>Mathematical models</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>membrane</topic><topic>Parallel molecular dynamics</topic><topic>Parallel ray tracing</topic><topic>Photosynthesis</topic><topic>photosynthesis (natural and artificial)</topic><topic>solar (fuels)</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stone, John E.</creatorcontrib><creatorcontrib>Sener, Melih</creatorcontrib><creatorcontrib>Vandivort, Kirby L.</creatorcontrib><creatorcontrib>Barragan, Angela</creatorcontrib><creatorcontrib>Singharoy, Abhishek</creatorcontrib><creatorcontrib>Teo, Ivan</creatorcontrib><creatorcontrib>Ribeiro, João V.</creatorcontrib><creatorcontrib>Isralewitz, Barry</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Goh, Boon Chong</creatorcontrib><creatorcontrib>Phillips, James C.</creatorcontrib><creatorcontrib>MacGregor-Chatwin, Craig</creatorcontrib><creatorcontrib>Johnson, Matthew P.</creatorcontrib><creatorcontrib>Kourkoutis, Lena F.</creatorcontrib><creatorcontrib>Hunter, C. Neil</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Parallel computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stone, John E.</au><au>Sener, Melih</au><au>Vandivort, Kirby L.</au><au>Barragan, Angela</au><au>Singharoy, Abhishek</au><au>Teo, Ivan</au><au>Ribeiro, João V.</au><au>Isralewitz, Barry</au><au>Liu, Bo</au><au>Goh, Boon Chong</au><au>Phillips, James C.</au><au>MacGregor-Chatwin, Craig</au><au>Johnson, Matthew P.</au><au>Kourkoutis, Lena F.</au><au>Hunter, C. Neil</au><au>Schulten, Klaus</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing</atitle><jtitle>Parallel computing</jtitle><addtitle>Parallel Comput</addtitle><date>2016-07</date><risdate>2016</risdate><volume>55</volume><issue>C</issue><spage>17</spage><epage>27</epage><pages>17-27</pages><issn>0167-8191</issn><eissn>1872-7336</eissn><abstract>•We present atomic-detail visualization of cellular processes responsible for photosynthesis in purple bacteria.•We describe parallel rendering approaches used to facilitate high-fidelity visualizations of 100M-atom photosynthetic membrane complexes.•We present an improved GPU-accelerated ray tracing engine optimized to enable high performance rendering of very large molecular scenes, yielding performance increases up to a factor of 1.46x vs. previously published results.•Unique ray tracing features for stereoscopic panoramic and omnidirectional projections required for planetariums and other so-called “full-dome” theater environments are described with example images.•VMD interactive ray tracing preview via progressive rendering allows visualizations and movies to be designed using full-quality lighting and shading, while remaining fully interactive, and supporting preview with head-mounted displays such as the Oculus Rift. The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27274603</pmid><doi>10.1016/j.parco.2015.10.015</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8191
ispartof Parallel computing, 2016-07, Vol.55 (C), p.17-27
issn 0167-8191
1872-7336
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4890717
source ScienceDirect Journals
subjects 60 APPLIED LIFE SCIENCES
Bacteria
bio-inspired
biofuels (including algae and biomass)
charge transport
Computation
Computer simulation
Construction
Cooperation
GPU computing
Mathematical models
MATHEMATICS AND COMPUTING
membrane
Parallel molecular dynamics
Parallel ray tracing
Photosynthesis
photosynthesis (natural and artificial)
solar (fuels)
synthesis (novel materials)
synthesis (self-assembly)
Visualization
title Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20detail%20visualization%20of%20photosynthetic%20membranes%20with%20GPU-accelerated%20ray%20tracing&rft.jtitle=Parallel%20computing&rft.au=Stone,%20John%20E.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2016-07&rft.volume=55&rft.issue=C&rft.spage=17&rft.epage=27&rft.pages=17-27&rft.issn=0167-8191&rft.eissn=1872-7336&rft_id=info:doi/10.1016/j.parco.2015.10.015&rft_dat=%3Cproquest_pubme%3E1825540189%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c519t-af0ad56ea882da3d83d2c5222f3e0ba969ca5b989dc1de406be218c9d91444623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825540189&rft_id=info:pmid/27274603&rfr_iscdi=true