Loading…

A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root

Theauxin efflux carrier PIN1 is a key mediator of polar auxin transport in developing plant tissues. This is why factors that are supposed to be involved in auxin distribution are frequently tested in the regulation of PIN1 expression. As a result, diverse aspects of PIN1 expression are dispersed ac...

Full description

Saved in:
Bibliographic Details
Published in:BMC plant biology 2016-01, Vol.16 Suppl 1 (6), p.5-5, Article 5
Main Authors: Omelyanchuk, N A, Kovrizhnykh, V V, Oshchepkova, E A, Pasternak, T, Palme, K, Mironova, V V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Theauxin efflux carrier PIN1 is a key mediator of polar auxin transport in developing plant tissues. This is why factors that are supposed to be involved in auxin distribution are frequently tested in the regulation of PIN1 expression. As a result, diverse aspects of PIN1 expression are dispersed across dozens of papers entirely devoted to other specific topics related to the auxin pathway. Integration of these puzzle pieces about PIN1 expression revealed that, along with a recurring pattern, some features of PIN1 expression varied from article to article. To determine if this uncertainty is related to the specific foci of articles or has a basis in the variability of PIN1 gene activity, we performed a comprehensive 3D analysis of PIN1 expression patterns in Arabidopsis thaliana roots. We provide here a detailed map of PIN1 expression in the primary root, in the lateral root primordia and at the root-shoot junction. The variability in PIN1 expression pattern observed in individual roots may occur due to differences in auxin distribution between plants. To simulate this effect, we analysed PIN1 expression in the roots from wild type seedlings treated with different IAA concentrations and pin mutants. Most changes in PIN1 expression after exogenous IAA treatment and in pin mutants were also recorded in wild type but with lower frequency and intensity. Comparative studies of exogenous auxin effects on PIN1pro:GUS and PIN1pro:PIN1-GFP plants indicated that a positive auxin effect is explicit at the level of PIN1 promoter activity, whereas the inhibitory effect relates to post-transcriptional regulation. Our results suggest that the PIN1 expression pattern in the root meristem accurately reflects changes in auxin content. This explains the variability of PIN1 expression in the individual roots and makes PIN1 a good marker for studying root meristem activity.
ISSN:1471-2229
1471-2229
DOI:10.1186/s12870-015-0685-0