Loading…

Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons

Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parki...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry 2009-12, Vol.111 (5), p.1202-1212
Main Authors: Hwang, Dong-Youn, Hong, Sunghoi, Jeong, Joo-Won, Choi, Sangdun, Kim, Hansoo, Kim, Jangwoo, Kim, Kwang-Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203
cites cdi_FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203
container_end_page 1212
container_issue 5
container_start_page 1202
container_title Journal of neurochemistry
container_volume 111
creator Hwang, Dong-Youn
Hong, Sunghoi
Jeong, Joo-Won
Choi, Sangdun
Kim, Hansoo
Kim, Jangwoo
Kim, Kwang-Soo
description Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson's disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway.
doi_str_mv 10.1111/j.1471-4159.2009.06404.x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4896488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897545391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203</originalsourceid><addsrcrecordid>eNqNkl-P1CAUxRujccfVr6DExMdWoJTCgyZm4t9s1ETXV0LhdpZJB2ahXWdf_eRSOxk1vsjLTbjn3HvIj6JABFckn-fbirCWlIw0sqIYywpzhll1uFOsTo27xQpjSssaM3pWPEhpizHhjJP7xRmRrcASk1Xx4xskZ6ZBR7QLPuid84DGqH3ahzhCRBRpb5EN-39bOkI2DbDYRx03MCYUevTZjYcaOY_GK0A34LNpQDtnu6jz5WmWhykGnx4W93o9JHh0rOfF5ZvXX9fvyotPb9-vX12UhmPJyg6goQDCyprWufSCmEbWpsV1izsLrDc1MMmMsC3gzpDOGkENB9Fxaymuz4uXy9z91O3AmiWX2ke30_FWBe3U3x3vrtQm3CgmJGdC5AFPjwNiuJ4gjWobpuhzZkUxbxqcGWSRWEQmhpQi9KcFBKsZntqqmZGaGakZnvoFTx2y9fGfAX8bj7Sy4NlRoJPRQ59ZGJdOOkoJJ4LMuheL7rsb4Pa_A6gPH9d8ecOTxd_roPQm5h2XX2gOkD-Q5HU-PwE0acLZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206550404</pqid></control><display><type>article</type><title>Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hwang, Dong-Youn ; Hong, Sunghoi ; Jeong, Joo-Won ; Choi, Sangdun ; Kim, Hansoo ; Kim, Jangwoo ; Kim, Kwang-Soo</creator><creatorcontrib>Hwang, Dong-Youn ; Hong, Sunghoi ; Jeong, Joo-Won ; Choi, Sangdun ; Kim, Hansoo ; Kim, Jangwoo ; Kim, Kwang-Soo</creatorcontrib><description>Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson's disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2009.06404.x</identifier><identifier>PMID: 19780901</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animals ; aphakia mice ; Biochemistry ; Biological and medical sciences ; Cell Line, Transformed ; Chromatin Immunoprecipitation - methods ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Dopamine - metabolism ; dopamine neuron ; Dopamine Plasma Membrane Transport Proteins - genetics ; Dopamine Plasma Membrane Transport Proteins - metabolism ; Embryo, Mammalian ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Developmental - genetics ; Gene Expression Regulation, Developmental - physiology ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; Leukemia Inhibitory Factor - pharmacology ; Medical sciences ; Mesencephalon - cytology ; Mice ; Mice, Knockout ; Microdissection - methods ; Nervous system (semeiology, syndromes) ; Nervous system as a whole ; Neurology ; Neurons ; Neurons - metabolism ; Neurotransmitters ; Oligonucleotide Array Sequence Analysis - methods ; Parkinson disease ; Parkinson’s disease ; Pitx3 ; substantia nigra pars compacta ; Transcription Factors - deficiency ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Vesicular Monoamine Transport Proteins - genetics ; Vesicular Monoamine Transport Proteins - metabolism</subject><ispartof>Journal of neurochemistry, 2009-12, Vol.111 (5), p.1202-1212</ispartof><rights>2009 The Authors. Journal Compilation © 2009 International Society for Neurochemistry</rights><rights>2015 INIST-CNRS</rights><rights>Journal compilation © 2009 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203</citedby><cites>FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22161811$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19780901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Dong-Youn</creatorcontrib><creatorcontrib>Hong, Sunghoi</creatorcontrib><creatorcontrib>Jeong, Joo-Won</creatorcontrib><creatorcontrib>Choi, Sangdun</creatorcontrib><creatorcontrib>Kim, Hansoo</creatorcontrib><creatorcontrib>Kim, Jangwoo</creatorcontrib><creatorcontrib>Kim, Kwang-Soo</creatorcontrib><title>Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson's disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway.</description><subject>Animals</subject><subject>aphakia mice</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Transformed</subject><subject>Chromatin Immunoprecipitation - methods</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Dopamine - metabolism</subject><subject>dopamine neuron</subject><subject>Dopamine Plasma Membrane Transport Proteins - genetics</subject><subject>Dopamine Plasma Membrane Transport Proteins - metabolism</subject><subject>Embryo, Mammalian</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Leukemia Inhibitory Factor - pharmacology</subject><subject>Medical sciences</subject><subject>Mesencephalon - cytology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microdissection - methods</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Nervous system as a whole</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurotransmitters</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Parkinson disease</subject><subject>Parkinson’s disease</subject><subject>Pitx3</subject><subject>substantia nigra pars compacta</subject><subject>Transcription Factors - deficiency</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Vesicular Monoamine Transport Proteins - genetics</subject><subject>Vesicular Monoamine Transport Proteins - metabolism</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkl-P1CAUxRujccfVr6DExMdWoJTCgyZm4t9s1ETXV0LhdpZJB2ahXWdf_eRSOxk1vsjLTbjn3HvIj6JABFckn-fbirCWlIw0sqIYywpzhll1uFOsTo27xQpjSssaM3pWPEhpizHhjJP7xRmRrcASk1Xx4xskZ6ZBR7QLPuid84DGqH3ahzhCRBRpb5EN-39bOkI2DbDYRx03MCYUevTZjYcaOY_GK0A34LNpQDtnu6jz5WmWhykGnx4W93o9JHh0rOfF5ZvXX9fvyotPb9-vX12UhmPJyg6goQDCyprWufSCmEbWpsV1izsLrDc1MMmMsC3gzpDOGkENB9Fxaymuz4uXy9z91O3AmiWX2ke30_FWBe3U3x3vrtQm3CgmJGdC5AFPjwNiuJ4gjWobpuhzZkUxbxqcGWSRWEQmhpQi9KcFBKsZntqqmZGaGakZnvoFTx2y9fGfAX8bj7Sy4NlRoJPRQ59ZGJdOOkoJJ4LMuheL7rsb4Pa_A6gPH9d8ecOTxd_roPQm5h2XX2gOkD-Q5HU-PwE0acLZ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Hwang, Dong-Youn</creator><creator>Hong, Sunghoi</creator><creator>Jeong, Joo-Won</creator><creator>Choi, Sangdun</creator><creator>Kim, Hansoo</creator><creator>Kim, Jangwoo</creator><creator>Kim, Kwang-Soo</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>200912</creationdate><title>Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons</title><author>Hwang, Dong-Youn ; Hong, Sunghoi ; Jeong, Joo-Won ; Choi, Sangdun ; Kim, Hansoo ; Kim, Jangwoo ; Kim, Kwang-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>aphakia mice</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Transformed</topic><topic>Chromatin Immunoprecipitation - methods</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Dopamine - metabolism</topic><topic>dopamine neuron</topic><topic>Dopamine Plasma Membrane Transport Proteins - genetics</topic><topic>Dopamine Plasma Membrane Transport Proteins - metabolism</topic><topic>Embryo, Mammalian</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Leukemia Inhibitory Factor - pharmacology</topic><topic>Medical sciences</topic><topic>Mesencephalon - cytology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microdissection - methods</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Nervous system as a whole</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurotransmitters</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Parkinson disease</topic><topic>Parkinson’s disease</topic><topic>Pitx3</topic><topic>substantia nigra pars compacta</topic><topic>Transcription Factors - deficiency</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Vesicular Monoamine Transport Proteins - genetics</topic><topic>Vesicular Monoamine Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Dong-Youn</creatorcontrib><creatorcontrib>Hong, Sunghoi</creatorcontrib><creatorcontrib>Jeong, Joo-Won</creatorcontrib><creatorcontrib>Choi, Sangdun</creatorcontrib><creatorcontrib>Kim, Hansoo</creatorcontrib><creatorcontrib>Kim, Jangwoo</creatorcontrib><creatorcontrib>Kim, Kwang-Soo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Dong-Youn</au><au>Hong, Sunghoi</au><au>Jeong, Joo-Won</au><au>Choi, Sangdun</au><au>Kim, Hansoo</au><au>Kim, Jangwoo</au><au>Kim, Kwang-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2009-12</date><risdate>2009</risdate><volume>111</volume><issue>5</issue><spage>1202</spage><epage>1212</epage><pages>1202-1212</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson's disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19780901</pmid><doi>10.1111/j.1471-4159.2009.06404.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2009-12, Vol.111 (5), p.1202-1212
issn 0022-3042
1471-4159
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4896488
source Wiley-Blackwell Read & Publish Collection; Free Full-Text Journals in Chemistry
subjects Animals
aphakia mice
Biochemistry
Biological and medical sciences
Cell Line, Transformed
Chromatin Immunoprecipitation - methods
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Dopamine - metabolism
dopamine neuron
Dopamine Plasma Membrane Transport Proteins - genetics
Dopamine Plasma Membrane Transport Proteins - metabolism
Embryo, Mammalian
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Developmental - drug effects
Gene Expression Regulation, Developmental - genetics
Gene Expression Regulation, Developmental - physiology
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Humans
Leukemia Inhibitory Factor - pharmacology
Medical sciences
Mesencephalon - cytology
Mice
Mice, Knockout
Microdissection - methods
Nervous system (semeiology, syndromes)
Nervous system as a whole
Neurology
Neurons
Neurons - metabolism
Neurotransmitters
Oligonucleotide Array Sequence Analysis - methods
Parkinson disease
Parkinson’s disease
Pitx3
substantia nigra pars compacta
Transcription Factors - deficiency
Transcription Factors - genetics
Transcription Factors - metabolism
Vesicular Monoamine Transport Proteins - genetics
Vesicular Monoamine Transport Proteins - metabolism
title Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vesicular%20monoamine%20transporter%202%20and%20dopamine%20transporter%20are%20molecular%20targets%20of%20Pitx3%20in%20the%20ventral%20midbrain%20dopamine%20neurons&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Hwang,%20Dong-Youn&rft.date=2009-12&rft.volume=111&rft.issue=5&rft.spage=1202&rft.epage=1212&rft.pages=1202-1212&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2009.06404.x&rft_dat=%3Cproquest_pubme%3E1897545391%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=206550404&rft_id=info:pmid/19780901&rfr_iscdi=true