Loading…
Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons
Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parki...
Saved in:
Published in: | Journal of neurochemistry 2009-12, Vol.111 (5), p.1202-1212 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203 |
---|---|
cites | cdi_FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203 |
container_end_page | 1212 |
container_issue | 5 |
container_start_page | 1202 |
container_title | Journal of neurochemistry |
container_volume | 111 |
creator | Hwang, Dong-Youn Hong, Sunghoi Jeong, Joo-Won Choi, Sangdun Kim, Hansoo Kim, Jangwoo Kim, Kwang-Soo |
description | Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson's disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway. |
doi_str_mv | 10.1111/j.1471-4159.2009.06404.x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4896488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897545391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203</originalsourceid><addsrcrecordid>eNqNkl-P1CAUxRujccfVr6DExMdWoJTCgyZm4t9s1ETXV0LhdpZJB2ahXWdf_eRSOxk1vsjLTbjn3HvIj6JABFckn-fbirCWlIw0sqIYywpzhll1uFOsTo27xQpjSssaM3pWPEhpizHhjJP7xRmRrcASk1Xx4xskZ6ZBR7QLPuid84DGqH3ahzhCRBRpb5EN-39bOkI2DbDYRx03MCYUevTZjYcaOY_GK0A34LNpQDtnu6jz5WmWhykGnx4W93o9JHh0rOfF5ZvXX9fvyotPb9-vX12UhmPJyg6goQDCyprWufSCmEbWpsV1izsLrDc1MMmMsC3gzpDOGkENB9Fxaymuz4uXy9z91O3AmiWX2ke30_FWBe3U3x3vrtQm3CgmJGdC5AFPjwNiuJ4gjWobpuhzZkUxbxqcGWSRWEQmhpQi9KcFBKsZntqqmZGaGakZnvoFTx2y9fGfAX8bj7Sy4NlRoJPRQ59ZGJdOOkoJJ4LMuheL7rsb4Pa_A6gPH9d8ecOTxd_roPQm5h2XX2gOkD-Q5HU-PwE0acLZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206550404</pqid></control><display><type>article</type><title>Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hwang, Dong-Youn ; Hong, Sunghoi ; Jeong, Joo-Won ; Choi, Sangdun ; Kim, Hansoo ; Kim, Jangwoo ; Kim, Kwang-Soo</creator><creatorcontrib>Hwang, Dong-Youn ; Hong, Sunghoi ; Jeong, Joo-Won ; Choi, Sangdun ; Kim, Hansoo ; Kim, Jangwoo ; Kim, Kwang-Soo</creatorcontrib><description>Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson's disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2009.06404.x</identifier><identifier>PMID: 19780901</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animals ; aphakia mice ; Biochemistry ; Biological and medical sciences ; Cell Line, Transformed ; Chromatin Immunoprecipitation - methods ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Dopamine - metabolism ; dopamine neuron ; Dopamine Plasma Membrane Transport Proteins - genetics ; Dopamine Plasma Membrane Transport Proteins - metabolism ; Embryo, Mammalian ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Developmental - genetics ; Gene Expression Regulation, Developmental - physiology ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; Leukemia Inhibitory Factor - pharmacology ; Medical sciences ; Mesencephalon - cytology ; Mice ; Mice, Knockout ; Microdissection - methods ; Nervous system (semeiology, syndromes) ; Nervous system as a whole ; Neurology ; Neurons ; Neurons - metabolism ; Neurotransmitters ; Oligonucleotide Array Sequence Analysis - methods ; Parkinson disease ; Parkinson’s disease ; Pitx3 ; substantia nigra pars compacta ; Transcription Factors - deficiency ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Vesicular Monoamine Transport Proteins - genetics ; Vesicular Monoamine Transport Proteins - metabolism</subject><ispartof>Journal of neurochemistry, 2009-12, Vol.111 (5), p.1202-1212</ispartof><rights>2009 The Authors. Journal Compilation © 2009 International Society for Neurochemistry</rights><rights>2015 INIST-CNRS</rights><rights>Journal compilation © 2009 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203</citedby><cites>FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22161811$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19780901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Dong-Youn</creatorcontrib><creatorcontrib>Hong, Sunghoi</creatorcontrib><creatorcontrib>Jeong, Joo-Won</creatorcontrib><creatorcontrib>Choi, Sangdun</creatorcontrib><creatorcontrib>Kim, Hansoo</creatorcontrib><creatorcontrib>Kim, Jangwoo</creatorcontrib><creatorcontrib>Kim, Kwang-Soo</creatorcontrib><title>Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson's disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway.</description><subject>Animals</subject><subject>aphakia mice</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Transformed</subject><subject>Chromatin Immunoprecipitation - methods</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Dopamine - metabolism</subject><subject>dopamine neuron</subject><subject>Dopamine Plasma Membrane Transport Proteins - genetics</subject><subject>Dopamine Plasma Membrane Transport Proteins - metabolism</subject><subject>Embryo, Mammalian</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Leukemia Inhibitory Factor - pharmacology</subject><subject>Medical sciences</subject><subject>Mesencephalon - cytology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microdissection - methods</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Nervous system as a whole</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurotransmitters</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Parkinson disease</subject><subject>Parkinson’s disease</subject><subject>Pitx3</subject><subject>substantia nigra pars compacta</subject><subject>Transcription Factors - deficiency</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Vesicular Monoamine Transport Proteins - genetics</subject><subject>Vesicular Monoamine Transport Proteins - metabolism</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkl-P1CAUxRujccfVr6DExMdWoJTCgyZm4t9s1ETXV0LhdpZJB2ahXWdf_eRSOxk1vsjLTbjn3HvIj6JABFckn-fbirCWlIw0sqIYywpzhll1uFOsTo27xQpjSssaM3pWPEhpizHhjJP7xRmRrcASk1Xx4xskZ6ZBR7QLPuid84DGqH3ahzhCRBRpb5EN-39bOkI2DbDYRx03MCYUevTZjYcaOY_GK0A34LNpQDtnu6jz5WmWhykGnx4W93o9JHh0rOfF5ZvXX9fvyotPb9-vX12UhmPJyg6goQDCyprWufSCmEbWpsV1izsLrDc1MMmMsC3gzpDOGkENB9Fxaymuz4uXy9z91O3AmiWX2ke30_FWBe3U3x3vrtQm3CgmJGdC5AFPjwNiuJ4gjWobpuhzZkUxbxqcGWSRWEQmhpQi9KcFBKsZntqqmZGaGakZnvoFTx2y9fGfAX8bj7Sy4NlRoJPRQ59ZGJdOOkoJJ4LMuheL7rsb4Pa_A6gPH9d8ecOTxd_roPQm5h2XX2gOkD-Q5HU-PwE0acLZ</recordid><startdate>200912</startdate><enddate>200912</enddate><creator>Hwang, Dong-Youn</creator><creator>Hong, Sunghoi</creator><creator>Jeong, Joo-Won</creator><creator>Choi, Sangdun</creator><creator>Kim, Hansoo</creator><creator>Kim, Jangwoo</creator><creator>Kim, Kwang-Soo</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>200912</creationdate><title>Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons</title><author>Hwang, Dong-Youn ; Hong, Sunghoi ; Jeong, Joo-Won ; Choi, Sangdun ; Kim, Hansoo ; Kim, Jangwoo ; Kim, Kwang-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>aphakia mice</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Transformed</topic><topic>Chromatin Immunoprecipitation - methods</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Dopamine - metabolism</topic><topic>dopamine neuron</topic><topic>Dopamine Plasma Membrane Transport Proteins - genetics</topic><topic>Dopamine Plasma Membrane Transport Proteins - metabolism</topic><topic>Embryo, Mammalian</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Leukemia Inhibitory Factor - pharmacology</topic><topic>Medical sciences</topic><topic>Mesencephalon - cytology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microdissection - methods</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Nervous system as a whole</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurotransmitters</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Parkinson disease</topic><topic>Parkinson’s disease</topic><topic>Pitx3</topic><topic>substantia nigra pars compacta</topic><topic>Transcription Factors - deficiency</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Vesicular Monoamine Transport Proteins - genetics</topic><topic>Vesicular Monoamine Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Dong-Youn</creatorcontrib><creatorcontrib>Hong, Sunghoi</creatorcontrib><creatorcontrib>Jeong, Joo-Won</creatorcontrib><creatorcontrib>Choi, Sangdun</creatorcontrib><creatorcontrib>Kim, Hansoo</creatorcontrib><creatorcontrib>Kim, Jangwoo</creatorcontrib><creatorcontrib>Kim, Kwang-Soo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Dong-Youn</au><au>Hong, Sunghoi</au><au>Jeong, Joo-Won</au><au>Choi, Sangdun</au><au>Kim, Hansoo</au><au>Kim, Jangwoo</au><au>Kim, Kwang-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2009-12</date><risdate>2009</risdate><volume>111</volume><issue>5</issue><spage>1202</spage><epage>1212</epage><pages>1202-1212</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson's disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19780901</pmid><doi>10.1111/j.1471-4159.2009.06404.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2009-12, Vol.111 (5), p.1202-1212 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4896488 |
source | Wiley-Blackwell Read & Publish Collection; Free Full-Text Journals in Chemistry |
subjects | Animals aphakia mice Biochemistry Biological and medical sciences Cell Line, Transformed Chromatin Immunoprecipitation - methods Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Dopamine - metabolism dopamine neuron Dopamine Plasma Membrane Transport Proteins - genetics Dopamine Plasma Membrane Transport Proteins - metabolism Embryo, Mammalian Gene expression Gene Expression Profiling - methods Gene Expression Regulation, Developmental - drug effects Gene Expression Regulation, Developmental - genetics Gene Expression Regulation, Developmental - physiology Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Humans Leukemia Inhibitory Factor - pharmacology Medical sciences Mesencephalon - cytology Mice Mice, Knockout Microdissection - methods Nervous system (semeiology, syndromes) Nervous system as a whole Neurology Neurons Neurons - metabolism Neurotransmitters Oligonucleotide Array Sequence Analysis - methods Parkinson disease Parkinson’s disease Pitx3 substantia nigra pars compacta Transcription Factors - deficiency Transcription Factors - genetics Transcription Factors - metabolism Vesicular Monoamine Transport Proteins - genetics Vesicular Monoamine Transport Proteins - metabolism |
title | Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vesicular%20monoamine%20transporter%202%20and%20dopamine%20transporter%20are%20molecular%20targets%20of%20Pitx3%20in%20the%20ventral%20midbrain%20dopamine%20neurons&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Hwang,%20Dong-Youn&rft.date=2009-12&rft.volume=111&rft.issue=5&rft.spage=1202&rft.epage=1212&rft.pages=1202-1212&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2009.06404.x&rft_dat=%3Cproquest_pubme%3E1897545391%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6094-bee52ee8d9323e8df81c593c70370bde4fc3e494c8d7e0bc1bdc82c6e8b6dd203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=206550404&rft_id=info:pmid/19780901&rfr_iscdi=true |