Loading…

Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models

After decades of debate, a mostly satisfactory resolution of relationships among the 11 recognized holometabolan orders of insects has been reached based on nuclear genes, resolving one of the most substantial branches of the tree-of-life, but the relationships are still not well established with mi...

Full description

Saved in:
Bibliographic Details
Published in:Genome biology and evolution 2016-05, Vol.8 (5), p.1411-1426
Main Authors: Song, Fan, Li, Hu, Jiang, Pei, Zhou, Xuguo, Liu, Jinpeng, Sun, Changhai, Vogler, Alfried P, Cai, Wanzhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2936-e4b0062fcb662ac6c3b18e6f2c1d415da4c7ffc0ce377de3535e14f3afa0cbef3
cites cdi_FETCH-LOGICAL-c2936-e4b0062fcb662ac6c3b18e6f2c1d415da4c7ffc0ce377de3535e14f3afa0cbef3
container_end_page 1426
container_issue 5
container_start_page 1411
container_title Genome biology and evolution
container_volume 8
creator Song, Fan
Li, Hu
Jiang, Pei
Zhou, Xuguo
Liu, Jinpeng
Sun, Changhai
Vogler, Alfried P
Cai, Wanzhi
description After decades of debate, a mostly satisfactory resolution of relationships among the 11 recognized holometabolan orders of insects has been reached based on nuclear genes, resolving one of the most substantial branches of the tree-of-life, but the relationships are still not well established with mitochondrial genome data. The main reasons have been the absence of sufficient data in several orders and lack of appropriate phylogenetic methods that avoid the systematic errors from compositional and mutational biases in insect mitochondrial genomes. In this study, we assembled the richest taxon sampling of Holometabola to date (199 species in 11 orders), and analyzed both nucleotide and amino acid data sets using several methods. We find the standard Bayesian inference and maximum-likelihood analyses were strongly affected by systematic biases, but the site-heterogeneous mixture model implemented in PhyloBayes avoided the false grouping of unrelated taxa exhibiting similar base composition and accelerated evolutionary rate. The inclusion of rRNA genes and removal of fast-evolving sites with the observed variability sorting method for identifying sites deviating from the mean rates improved the phylogenetic inferences under a site-heterogeneous model, correctly recovering most deep branches of the Holometabola phylogeny. We suggest that the use of mitochondrial genome data for resolving deep phylogenetic relationships requires an assessment of the potential impact of substitutional saturation and compositional biases through data deletion strategies and by using site-heterogeneous mixture models. Our study suggests a practical approach for how to use densely sampled mitochondrial genome data in phylogenetic analyses.
doi_str_mv 10.1093/gbe/evw086
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4898802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1791328341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-e4b0062fcb662ac6c3b18e6f2c1d415da4c7ffc0ce377de3535e14f3afa0cbef3</originalsourceid><addsrcrecordid>eNpVUV1r3DAQFKEln33pDyh6LAUnkmXL9kuhuSa5QkIDbZ_FWl6dVXTWVZKT3L-vkktDui-7sLMzswwh7zk75awTZ6sez_DunrVyjxzypu4KKWvx5tV8QI5i_M2YlJUU--SgbHjb5Tok8wI2aQ52WtE0Ir0dt86vcNpSb-jSO7_GBL13QO9tGumNTV6PfhqCBUevcMp7-hUSUJgGeg5bjBYm-sMmLJaYMDxyoZ9jvnzIMkhv_IAunpC3BlzEd8_9mPy6vPi5WBbX36--Lb5cF7rshCyw6rPn0uheyhK01KLnLUpTaj5UvB6g0o0xmmkUTTOgqEWNvDICDDDdoxHH5POOdzP3axw0TimAU5tg1xC2yoNV_28mO6qVv1NV27UtKzPBx2eC4P_MGJNa26jROXh6S_Gm46JsRcUz9NMOqoOPMaB5keFMPeakck5ql1MGf3ht7AX6LxjxFy7Qk8o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791328341</pqid></control><display><type>article</type><title>Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models</title><source>Open Access: PubMed Central</source><source>Oxford University Press Open Access</source><creator>Song, Fan ; Li, Hu ; Jiang, Pei ; Zhou, Xuguo ; Liu, Jinpeng ; Sun, Changhai ; Vogler, Alfried P ; Cai, Wanzhi</creator><creatorcontrib>Song, Fan ; Li, Hu ; Jiang, Pei ; Zhou, Xuguo ; Liu, Jinpeng ; Sun, Changhai ; Vogler, Alfried P ; Cai, Wanzhi</creatorcontrib><description>After decades of debate, a mostly satisfactory resolution of relationships among the 11 recognized holometabolan orders of insects has been reached based on nuclear genes, resolving one of the most substantial branches of the tree-of-life, but the relationships are still not well established with mitochondrial genome data. The main reasons have been the absence of sufficient data in several orders and lack of appropriate phylogenetic methods that avoid the systematic errors from compositional and mutational biases in insect mitochondrial genomes. In this study, we assembled the richest taxon sampling of Holometabola to date (199 species in 11 orders), and analyzed both nucleotide and amino acid data sets using several methods. We find the standard Bayesian inference and maximum-likelihood analyses were strongly affected by systematic biases, but the site-heterogeneous mixture model implemented in PhyloBayes avoided the false grouping of unrelated taxa exhibiting similar base composition and accelerated evolutionary rate. The inclusion of rRNA genes and removal of fast-evolving sites with the observed variability sorting method for identifying sites deviating from the mean rates improved the phylogenetic inferences under a site-heterogeneous model, correctly recovering most deep branches of the Holometabola phylogeny. We suggest that the use of mitochondrial genome data for resolving deep phylogenetic relationships requires an assessment of the potential impact of substitutional saturation and compositional biases through data deletion strategies and by using site-heterogeneous mixture models. Our study suggests a practical approach for how to use densely sampled mitochondrial genome data in phylogenetic analyses.</description><identifier>ISSN: 1759-6653</identifier><identifier>EISSN: 1759-6653</identifier><identifier>DOI: 10.1093/gbe/evw086</identifier><identifier>PMID: 27189999</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Evolution, Molecular ; Genome, Mitochondrial - genetics ; High-Throughput Nucleotide Sequencing ; Insecta - genetics ; Mitochondria - genetics ; Molecular Sequence Annotation ; Mutation ; Phylogeny</subject><ispartof>Genome biology and evolution, 2016-05, Vol.8 (5), p.1411-1426</ispartof><rights>The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><rights>The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-e4b0062fcb662ac6c3b18e6f2c1d415da4c7ffc0ce377de3535e14f3afa0cbef3</citedby><cites>FETCH-LOGICAL-c2936-e4b0062fcb662ac6c3b18e6f2c1d415da4c7ffc0ce377de3535e14f3afa0cbef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898802/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898802/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27189999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Fan</creatorcontrib><creatorcontrib>Li, Hu</creatorcontrib><creatorcontrib>Jiang, Pei</creatorcontrib><creatorcontrib>Zhou, Xuguo</creatorcontrib><creatorcontrib>Liu, Jinpeng</creatorcontrib><creatorcontrib>Sun, Changhai</creatorcontrib><creatorcontrib>Vogler, Alfried P</creatorcontrib><creatorcontrib>Cai, Wanzhi</creatorcontrib><title>Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models</title><title>Genome biology and evolution</title><addtitle>Genome Biol Evol</addtitle><description>After decades of debate, a mostly satisfactory resolution of relationships among the 11 recognized holometabolan orders of insects has been reached based on nuclear genes, resolving one of the most substantial branches of the tree-of-life, but the relationships are still not well established with mitochondrial genome data. The main reasons have been the absence of sufficient data in several orders and lack of appropriate phylogenetic methods that avoid the systematic errors from compositional and mutational biases in insect mitochondrial genomes. In this study, we assembled the richest taxon sampling of Holometabola to date (199 species in 11 orders), and analyzed both nucleotide and amino acid data sets using several methods. We find the standard Bayesian inference and maximum-likelihood analyses were strongly affected by systematic biases, but the site-heterogeneous mixture model implemented in PhyloBayes avoided the false grouping of unrelated taxa exhibiting similar base composition and accelerated evolutionary rate. The inclusion of rRNA genes and removal of fast-evolving sites with the observed variability sorting method for identifying sites deviating from the mean rates improved the phylogenetic inferences under a site-heterogeneous model, correctly recovering most deep branches of the Holometabola phylogeny. We suggest that the use of mitochondrial genome data for resolving deep phylogenetic relationships requires an assessment of the potential impact of substitutional saturation and compositional biases through data deletion strategies and by using site-heterogeneous mixture models. Our study suggests a practical approach for how to use densely sampled mitochondrial genome data in phylogenetic analyses.</description><subject>Animals</subject><subject>Evolution, Molecular</subject><subject>Genome, Mitochondrial - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Insecta - genetics</subject><subject>Mitochondria - genetics</subject><subject>Molecular Sequence Annotation</subject><subject>Mutation</subject><subject>Phylogeny</subject><issn>1759-6653</issn><issn>1759-6653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVUV1r3DAQFKEln33pDyh6LAUnkmXL9kuhuSa5QkIDbZ_FWl6dVXTWVZKT3L-vkktDui-7sLMzswwh7zk75awTZ6sez_DunrVyjxzypu4KKWvx5tV8QI5i_M2YlJUU--SgbHjb5Tok8wI2aQ52WtE0Ir0dt86vcNpSb-jSO7_GBL13QO9tGumNTV6PfhqCBUevcMp7-hUSUJgGeg5bjBYm-sMmLJaYMDxyoZ9jvnzIMkhv_IAunpC3BlzEd8_9mPy6vPi5WBbX36--Lb5cF7rshCyw6rPn0uheyhK01KLnLUpTaj5UvB6g0o0xmmkUTTOgqEWNvDICDDDdoxHH5POOdzP3axw0TimAU5tg1xC2yoNV_28mO6qVv1NV27UtKzPBx2eC4P_MGJNa26jROXh6S_Gm46JsRcUz9NMOqoOPMaB5keFMPeakck5ql1MGf3ht7AX6LxjxFy7Qk8o</recordid><startdate>20160522</startdate><enddate>20160522</enddate><creator>Song, Fan</creator><creator>Li, Hu</creator><creator>Jiang, Pei</creator><creator>Zhou, Xuguo</creator><creator>Liu, Jinpeng</creator><creator>Sun, Changhai</creator><creator>Vogler, Alfried P</creator><creator>Cai, Wanzhi</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160522</creationdate><title>Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models</title><author>Song, Fan ; Li, Hu ; Jiang, Pei ; Zhou, Xuguo ; Liu, Jinpeng ; Sun, Changhai ; Vogler, Alfried P ; Cai, Wanzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-e4b0062fcb662ac6c3b18e6f2c1d415da4c7ffc0ce377de3535e14f3afa0cbef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Evolution, Molecular</topic><topic>Genome, Mitochondrial - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Insecta - genetics</topic><topic>Mitochondria - genetics</topic><topic>Molecular Sequence Annotation</topic><topic>Mutation</topic><topic>Phylogeny</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Fan</creatorcontrib><creatorcontrib>Li, Hu</creatorcontrib><creatorcontrib>Jiang, Pei</creatorcontrib><creatorcontrib>Zhou, Xuguo</creatorcontrib><creatorcontrib>Liu, Jinpeng</creatorcontrib><creatorcontrib>Sun, Changhai</creatorcontrib><creatorcontrib>Vogler, Alfried P</creatorcontrib><creatorcontrib>Cai, Wanzhi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Fan</au><au>Li, Hu</au><au>Jiang, Pei</au><au>Zhou, Xuguo</au><au>Liu, Jinpeng</au><au>Sun, Changhai</au><au>Vogler, Alfried P</au><au>Cai, Wanzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models</atitle><jtitle>Genome biology and evolution</jtitle><addtitle>Genome Biol Evol</addtitle><date>2016-05-22</date><risdate>2016</risdate><volume>8</volume><issue>5</issue><spage>1411</spage><epage>1426</epage><pages>1411-1426</pages><issn>1759-6653</issn><eissn>1759-6653</eissn><abstract>After decades of debate, a mostly satisfactory resolution of relationships among the 11 recognized holometabolan orders of insects has been reached based on nuclear genes, resolving one of the most substantial branches of the tree-of-life, but the relationships are still not well established with mitochondrial genome data. The main reasons have been the absence of sufficient data in several orders and lack of appropriate phylogenetic methods that avoid the systematic errors from compositional and mutational biases in insect mitochondrial genomes. In this study, we assembled the richest taxon sampling of Holometabola to date (199 species in 11 orders), and analyzed both nucleotide and amino acid data sets using several methods. We find the standard Bayesian inference and maximum-likelihood analyses were strongly affected by systematic biases, but the site-heterogeneous mixture model implemented in PhyloBayes avoided the false grouping of unrelated taxa exhibiting similar base composition and accelerated evolutionary rate. The inclusion of rRNA genes and removal of fast-evolving sites with the observed variability sorting method for identifying sites deviating from the mean rates improved the phylogenetic inferences under a site-heterogeneous model, correctly recovering most deep branches of the Holometabola phylogeny. We suggest that the use of mitochondrial genome data for resolving deep phylogenetic relationships requires an assessment of the potential impact of substitutional saturation and compositional biases through data deletion strategies and by using site-heterogeneous mixture models. Our study suggests a practical approach for how to use densely sampled mitochondrial genome data in phylogenetic analyses.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27189999</pmid><doi>10.1093/gbe/evw086</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-6653
ispartof Genome biology and evolution, 2016-05, Vol.8 (5), p.1411-1426
issn 1759-6653
1759-6653
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4898802
source Open Access: PubMed Central; Oxford University Press Open Access
subjects Animals
Evolution, Molecular
Genome, Mitochondrial - genetics
High-Throughput Nucleotide Sequencing
Insecta - genetics
Mitochondria - genetics
Molecular Sequence Annotation
Mutation
Phylogeny
title Capturing the Phylogeny of Holometabola with Mitochondrial Genome Data and Bayesian Site-Heterogeneous Mixture Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capturing%20the%20Phylogeny%20of%20Holometabola%20with%20Mitochondrial%20Genome%20Data%20and%20Bayesian%20Site-Heterogeneous%20Mixture%20Models&rft.jtitle=Genome%20biology%20and%20evolution&rft.au=Song,%20Fan&rft.date=2016-05-22&rft.volume=8&rft.issue=5&rft.spage=1411&rft.epage=1426&rft.pages=1411-1426&rft.issn=1759-6653&rft.eissn=1759-6653&rft_id=info:doi/10.1093/gbe/evw086&rft_dat=%3Cproquest_pubme%3E1791328341%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2936-e4b0062fcb662ac6c3b18e6f2c1d415da4c7ffc0ce377de3535e14f3afa0cbef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1791328341&rft_id=info:pmid/27189999&rfr_iscdi=true