Loading…
Detection of RNA–Protein Interactions in Living Cells with SHAPE
SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA str...
Saved in:
Published in: | Biochemistry (Easton) 2015-11, Vol.54 (46), p.6867-6875 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873 |
---|---|
cites | cdi_FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873 |
container_end_page | 6875 |
container_issue | 46 |
container_start_page | 6867 |
container_title | Biochemistry (Easton) |
container_volume | 54 |
creator | Smola, Matthew J Calabrese, J. Mauro Weeks, Kevin M |
description | SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA structural differences between any two states, and we use it here to detect RNA–protein interactions in healthy mouse trophoblast stem cells. We validate this approach by analysis of three model cytoplasmic and nuclear ribonucleoprotein complexes, in 2 min in-cell probing experiments. In contrast, data produced by alternative in-cell SHAPE probing methods correlate poorly (r = 0.2) with those generated by SHAPE-MaP and do not yield accurate signals for RNA–protein interactions. We then examine RNA–protein and RNA–substrate interactions in the RNase MRP complex and, by comparing in-cell interaction sites with disease-associated mutations, characterize these noncoding mutations in terms of molecular phenotype. Together, these results reveal that SHAPE-MaP can define true interaction sites and infer RNA functions under native cellular conditions with limited preexisting knowledge of the proteins or RNAs involved. |
doi_str_mv | 10.1021/acs.biochem.5b00977 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4900165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1836643651</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhYMoWqtPIMgs3Uy9mfzNbIRa_wpFxZ91SGLGRtqJJlPFne_gG_okRltFN7oKl3vOIed-CG1h6GEo8K4ysaedN2M77TENUAmxhDqYFZDTqmLLqAMAPC8qDmtoPca7NFIQdBWtFZxRWmHooP0D21rTOt9kvs4uTvtvL6_nwbfWNdmwaW1Qn8uYpXnkHl1zmw3sZBKzJ9eOs8uT_vnhBlqp1STazcXbRddHh1eDk3x0djwc9Ee5oqJs84LUJWbEKFYYDhwLwmoKFmtDrNBlLbTSlJRKc2V1obEGyitSYWWxUqoUpIv25rn3Mz21N8Y2bVATeR_cVIVn6ZWTvzeNG8tb_yhpBYA5SwE7i4DgH2Y2tnLqokltVGP9LEpcEs4p4Qz_LxWE09SG8yQlc6kJPsZg6-8fYZAfoGQCJReg5AJUcm3_LPPt-SKTBLtzwYf7zs9Ck277Z-Q7p1uiRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736415366</pqid></control><display><type>article</type><title>Detection of RNA–Protein Interactions in Living Cells with SHAPE</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Smola, Matthew J ; Calabrese, J. Mauro ; Weeks, Kevin M</creator><creatorcontrib>Smola, Matthew J ; Calabrese, J. Mauro ; Weeks, Kevin M</creatorcontrib><description>SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA structural differences between any two states, and we use it here to detect RNA–protein interactions in healthy mouse trophoblast stem cells. We validate this approach by analysis of three model cytoplasmic and nuclear ribonucleoprotein complexes, in 2 min in-cell probing experiments. In contrast, data produced by alternative in-cell SHAPE probing methods correlate poorly (r = 0.2) with those generated by SHAPE-MaP and do not yield accurate signals for RNA–protein interactions. We then examine RNA–protein and RNA–substrate interactions in the RNase MRP complex and, by comparing in-cell interaction sites with disease-associated mutations, characterize these noncoding mutations in terms of molecular phenotype. Together, these results reveal that SHAPE-MaP can define true interaction sites and infer RNA functions under native cellular conditions with limited preexisting knowledge of the proteins or RNAs involved.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.5b00977</identifier><identifier>PMID: 26544910</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acylation ; Animals ; Binding Sites ; Cells, Cultured ; Embryonic Stem Cells - metabolism ; Mice ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; phenotype ; Protein Conformation ; Proteins - chemistry ; Proteins - metabolism ; ribonucleases ; ribonucleoproteins ; Ribonucleoproteins - chemistry ; Ribonucleoproteins - metabolism ; RNA ; RNA - chemistry ; RNA - genetics ; RNA - metabolism ; stem cells ; trophoblast ; uncertainty</subject><ispartof>Biochemistry (Easton), 2015-11, Vol.54 (46), p.6867-6875</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873</citedby><cites>FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26544910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smola, Matthew J</creatorcontrib><creatorcontrib>Calabrese, J. Mauro</creatorcontrib><creatorcontrib>Weeks, Kevin M</creatorcontrib><title>Detection of RNA–Protein Interactions in Living Cells with SHAPE</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA structural differences between any two states, and we use it here to detect RNA–protein interactions in healthy mouse trophoblast stem cells. We validate this approach by analysis of three model cytoplasmic and nuclear ribonucleoprotein complexes, in 2 min in-cell probing experiments. In contrast, data produced by alternative in-cell SHAPE probing methods correlate poorly (r = 0.2) with those generated by SHAPE-MaP and do not yield accurate signals for RNA–protein interactions. We then examine RNA–protein and RNA–substrate interactions in the RNase MRP complex and, by comparing in-cell interaction sites with disease-associated mutations, characterize these noncoding mutations in terms of molecular phenotype. Together, these results reveal that SHAPE-MaP can define true interaction sites and infer RNA functions under native cellular conditions with limited preexisting knowledge of the proteins or RNAs involved.</description><subject>Acylation</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Cells, Cultured</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>phenotype</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>ribonucleases</subject><subject>ribonucleoproteins</subject><subject>Ribonucleoproteins - chemistry</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>stem cells</subject><subject>trophoblast</subject><subject>uncertainty</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KAzEUhYMoWqtPIMgs3Uy9mfzNbIRa_wpFxZ91SGLGRtqJJlPFne_gG_okRltFN7oKl3vOIed-CG1h6GEo8K4ysaedN2M77TENUAmxhDqYFZDTqmLLqAMAPC8qDmtoPca7NFIQdBWtFZxRWmHooP0D21rTOt9kvs4uTvtvL6_nwbfWNdmwaW1Qn8uYpXnkHl1zmw3sZBKzJ9eOs8uT_vnhBlqp1STazcXbRddHh1eDk3x0djwc9Ee5oqJs84LUJWbEKFYYDhwLwmoKFmtDrNBlLbTSlJRKc2V1obEGyitSYWWxUqoUpIv25rn3Mz21N8Y2bVATeR_cVIVn6ZWTvzeNG8tb_yhpBYA5SwE7i4DgH2Y2tnLqokltVGP9LEpcEs4p4Qz_LxWE09SG8yQlc6kJPsZg6-8fYZAfoGQCJReg5AJUcm3_LPPt-SKTBLtzwYf7zs9Ck277Z-Q7p1uiRg</recordid><startdate>20151124</startdate><enddate>20151124</enddate><creator>Smola, Matthew J</creator><creator>Calabrese, J. Mauro</creator><creator>Weeks, Kevin M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20151124</creationdate><title>Detection of RNA–Protein Interactions in Living Cells with SHAPE</title><author>Smola, Matthew J ; Calabrese, J. Mauro ; Weeks, Kevin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acylation</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Cells, Cultured</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>phenotype</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>ribonucleases</topic><topic>ribonucleoproteins</topic><topic>Ribonucleoproteins - chemistry</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>stem cells</topic><topic>trophoblast</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smola, Matthew J</creatorcontrib><creatorcontrib>Calabrese, J. Mauro</creatorcontrib><creatorcontrib>Weeks, Kevin M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smola, Matthew J</au><au>Calabrese, J. Mauro</au><au>Weeks, Kevin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of RNA–Protein Interactions in Living Cells with SHAPE</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2015-11-24</date><risdate>2015</risdate><volume>54</volume><issue>46</issue><spage>6867</spage><epage>6875</epage><pages>6867-6875</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA structural differences between any two states, and we use it here to detect RNA–protein interactions in healthy mouse trophoblast stem cells. We validate this approach by analysis of three model cytoplasmic and nuclear ribonucleoprotein complexes, in 2 min in-cell probing experiments. In contrast, data produced by alternative in-cell SHAPE probing methods correlate poorly (r = 0.2) with those generated by SHAPE-MaP and do not yield accurate signals for RNA–protein interactions. We then examine RNA–protein and RNA–substrate interactions in the RNase MRP complex and, by comparing in-cell interaction sites with disease-associated mutations, characterize these noncoding mutations in terms of molecular phenotype. Together, these results reveal that SHAPE-MaP can define true interaction sites and infer RNA functions under native cellular conditions with limited preexisting knowledge of the proteins or RNAs involved.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26544910</pmid><doi>10.1021/acs.biochem.5b00977</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2015-11, Vol.54 (46), p.6867-6875 |
issn | 0006-2960 1520-4995 1520-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4900165 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Acylation Animals Binding Sites Cells, Cultured Embryonic Stem Cells - metabolism Mice Models, Molecular Mutation Nucleic Acid Conformation phenotype Protein Conformation Proteins - chemistry Proteins - metabolism ribonucleases ribonucleoproteins Ribonucleoproteins - chemistry Ribonucleoproteins - metabolism RNA RNA - chemistry RNA - genetics RNA - metabolism stem cells trophoblast uncertainty |
title | Detection of RNA–Protein Interactions in Living Cells with SHAPE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20RNA%E2%80%93Protein%20Interactions%20in%20Living%20Cells%20with%20SHAPE&rft.jtitle=Biochemistry%20(Easton)&rft.au=Smola,%20Matthew%20J&rft.date=2015-11-24&rft.volume=54&rft.issue=46&rft.spage=6867&rft.epage=6875&rft.pages=6867-6875&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.5b00977&rft_dat=%3Cproquest_pubme%3E1836643651%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1736415366&rft_id=info:pmid/26544910&rfr_iscdi=true |