Loading…

Detection of RNA–Protein Interactions in Living Cells with SHAPE

SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA str...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2015-11, Vol.54 (46), p.6867-6875
Main Authors: Smola, Matthew J, Calabrese, J. Mauro, Weeks, Kevin M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873
cites cdi_FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873
container_end_page 6875
container_issue 46
container_start_page 6867
container_title Biochemistry (Easton)
container_volume 54
creator Smola, Matthew J
Calabrese, J. Mauro
Weeks, Kevin M
description SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA structural differences between any two states, and we use it here to detect RNA–protein interactions in healthy mouse trophoblast stem cells. We validate this approach by analysis of three model cytoplasmic and nuclear ribonucleoprotein complexes, in 2 min in-cell probing experiments. In contrast, data produced by alternative in-cell SHAPE probing methods correlate poorly (r = 0.2) with those generated by SHAPE-MaP and do not yield accurate signals for RNA–protein interactions. We then examine RNA–protein and RNA–substrate interactions in the RNase MRP complex and, by comparing in-cell interaction sites with disease-associated mutations, characterize these noncoding mutations in terms of molecular phenotype. Together, these results reveal that SHAPE-MaP can define true interaction sites and infer RNA functions under native cellular conditions with limited preexisting knowledge of the proteins or RNAs involved.
doi_str_mv 10.1021/acs.biochem.5b00977
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4900165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1836643651</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhYMoWqtPIMgs3Uy9mfzNbIRa_wpFxZ91SGLGRtqJJlPFne_gG_okRltFN7oKl3vOIed-CG1h6GEo8K4ysaedN2M77TENUAmxhDqYFZDTqmLLqAMAPC8qDmtoPca7NFIQdBWtFZxRWmHooP0D21rTOt9kvs4uTvtvL6_nwbfWNdmwaW1Qn8uYpXnkHl1zmw3sZBKzJ9eOs8uT_vnhBlqp1STazcXbRddHh1eDk3x0djwc9Ee5oqJs84LUJWbEKFYYDhwLwmoKFmtDrNBlLbTSlJRKc2V1obEGyitSYWWxUqoUpIv25rn3Mz21N8Y2bVATeR_cVIVn6ZWTvzeNG8tb_yhpBYA5SwE7i4DgH2Y2tnLqokltVGP9LEpcEs4p4Qz_LxWE09SG8yQlc6kJPsZg6-8fYZAfoGQCJReg5AJUcm3_LPPt-SKTBLtzwYf7zs9Ck277Z-Q7p1uiRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736415366</pqid></control><display><type>article</type><title>Detection of RNA–Protein Interactions in Living Cells with SHAPE</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Smola, Matthew J ; Calabrese, J. Mauro ; Weeks, Kevin M</creator><creatorcontrib>Smola, Matthew J ; Calabrese, J. Mauro ; Weeks, Kevin M</creatorcontrib><description>SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA structural differences between any two states, and we use it here to detect RNA–protein interactions in healthy mouse trophoblast stem cells. We validate this approach by analysis of three model cytoplasmic and nuclear ribonucleoprotein complexes, in 2 min in-cell probing experiments. In contrast, data produced by alternative in-cell SHAPE probing methods correlate poorly (r = 0.2) with those generated by SHAPE-MaP and do not yield accurate signals for RNA–protein interactions. We then examine RNA–protein and RNA–substrate interactions in the RNase MRP complex and, by comparing in-cell interaction sites with disease-associated mutations, characterize these noncoding mutations in terms of molecular phenotype. Together, these results reveal that SHAPE-MaP can define true interaction sites and infer RNA functions under native cellular conditions with limited preexisting knowledge of the proteins or RNAs involved.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.5b00977</identifier><identifier>PMID: 26544910</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acylation ; Animals ; Binding Sites ; Cells, Cultured ; Embryonic Stem Cells - metabolism ; Mice ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; phenotype ; Protein Conformation ; Proteins - chemistry ; Proteins - metabolism ; ribonucleases ; ribonucleoproteins ; Ribonucleoproteins - chemistry ; Ribonucleoproteins - metabolism ; RNA ; RNA - chemistry ; RNA - genetics ; RNA - metabolism ; stem cells ; trophoblast ; uncertainty</subject><ispartof>Biochemistry (Easton), 2015-11, Vol.54 (46), p.6867-6875</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873</citedby><cites>FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26544910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smola, Matthew J</creatorcontrib><creatorcontrib>Calabrese, J. Mauro</creatorcontrib><creatorcontrib>Weeks, Kevin M</creatorcontrib><title>Detection of RNA–Protein Interactions in Living Cells with SHAPE</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA structural differences between any two states, and we use it here to detect RNA–protein interactions in healthy mouse trophoblast stem cells. We validate this approach by analysis of three model cytoplasmic and nuclear ribonucleoprotein complexes, in 2 min in-cell probing experiments. In contrast, data produced by alternative in-cell SHAPE probing methods correlate poorly (r = 0.2) with those generated by SHAPE-MaP and do not yield accurate signals for RNA–protein interactions. We then examine RNA–protein and RNA–substrate interactions in the RNase MRP complex and, by comparing in-cell interaction sites with disease-associated mutations, characterize these noncoding mutations in terms of molecular phenotype. Together, these results reveal that SHAPE-MaP can define true interaction sites and infer RNA functions under native cellular conditions with limited preexisting knowledge of the proteins or RNAs involved.</description><subject>Acylation</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Cells, Cultured</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>phenotype</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>ribonucleases</subject><subject>ribonucleoproteins</subject><subject>Ribonucleoproteins - chemistry</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>stem cells</subject><subject>trophoblast</subject><subject>uncertainty</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KAzEUhYMoWqtPIMgs3Uy9mfzNbIRa_wpFxZ91SGLGRtqJJlPFne_gG_okRltFN7oKl3vOIed-CG1h6GEo8K4ysaedN2M77TENUAmxhDqYFZDTqmLLqAMAPC8qDmtoPca7NFIQdBWtFZxRWmHooP0D21rTOt9kvs4uTvtvL6_nwbfWNdmwaW1Qn8uYpXnkHl1zmw3sZBKzJ9eOs8uT_vnhBlqp1STazcXbRddHh1eDk3x0djwc9Ee5oqJs84LUJWbEKFYYDhwLwmoKFmtDrNBlLbTSlJRKc2V1obEGyitSYWWxUqoUpIv25rn3Mz21N8Y2bVATeR_cVIVn6ZWTvzeNG8tb_yhpBYA5SwE7i4DgH2Y2tnLqokltVGP9LEpcEs4p4Qz_LxWE09SG8yQlc6kJPsZg6-8fYZAfoGQCJReg5AJUcm3_LPPt-SKTBLtzwYf7zs9Ck277Z-Q7p1uiRg</recordid><startdate>20151124</startdate><enddate>20151124</enddate><creator>Smola, Matthew J</creator><creator>Calabrese, J. Mauro</creator><creator>Weeks, Kevin M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20151124</creationdate><title>Detection of RNA–Protein Interactions in Living Cells with SHAPE</title><author>Smola, Matthew J ; Calabrese, J. Mauro ; Weeks, Kevin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acylation</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Cells, Cultured</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>phenotype</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>ribonucleases</topic><topic>ribonucleoproteins</topic><topic>Ribonucleoproteins - chemistry</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>stem cells</topic><topic>trophoblast</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smola, Matthew J</creatorcontrib><creatorcontrib>Calabrese, J. Mauro</creatorcontrib><creatorcontrib>Weeks, Kevin M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smola, Matthew J</au><au>Calabrese, J. Mauro</au><au>Weeks, Kevin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of RNA–Protein Interactions in Living Cells with SHAPE</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2015-11-24</date><risdate>2015</risdate><volume>54</volume><issue>46</issue><spage>6867</spage><epage>6875</epage><pages>6867-6875</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA structural differences between any two states, and we use it here to detect RNA–protein interactions in healthy mouse trophoblast stem cells. We validate this approach by analysis of three model cytoplasmic and nuclear ribonucleoprotein complexes, in 2 min in-cell probing experiments. In contrast, data produced by alternative in-cell SHAPE probing methods correlate poorly (r = 0.2) with those generated by SHAPE-MaP and do not yield accurate signals for RNA–protein interactions. We then examine RNA–protein and RNA–substrate interactions in the RNase MRP complex and, by comparing in-cell interaction sites with disease-associated mutations, characterize these noncoding mutations in terms of molecular phenotype. Together, these results reveal that SHAPE-MaP can define true interaction sites and infer RNA functions under native cellular conditions with limited preexisting knowledge of the proteins or RNAs involved.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26544910</pmid><doi>10.1021/acs.biochem.5b00977</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2015-11, Vol.54 (46), p.6867-6875
issn 0006-2960
1520-4995
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4900165
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Acylation
Animals
Binding Sites
Cells, Cultured
Embryonic Stem Cells - metabolism
Mice
Models, Molecular
Mutation
Nucleic Acid Conformation
phenotype
Protein Conformation
Proteins - chemistry
Proteins - metabolism
ribonucleases
ribonucleoproteins
Ribonucleoproteins - chemistry
Ribonucleoproteins - metabolism
RNA
RNA - chemistry
RNA - genetics
RNA - metabolism
stem cells
trophoblast
uncertainty
title Detection of RNA–Protein Interactions in Living Cells with SHAPE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20RNA%E2%80%93Protein%20Interactions%20in%20Living%20Cells%20with%20SHAPE&rft.jtitle=Biochemistry%20(Easton)&rft.au=Smola,%20Matthew%20J&rft.date=2015-11-24&rft.volume=54&rft.issue=46&rft.spage=6867&rft.epage=6875&rft.pages=6867-6875&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.5b00977&rft_dat=%3Cproquest_pubme%3E1836643651%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a478t-23f8153ca52c6061735f40e1bc3e7b8f7bab438ab6aeb2b1b0469391ae1aaa873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1736415366&rft_id=info:pmid/26544910&rfr_iscdi=true