Loading…

Transient ECM protease activity promotes synaptic plasticity

Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of p...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-06, Vol.6 (1), p.27757-27757, Article 27757
Main Authors: Magnowska, Marta, Gorkiewicz, Tomasz, Suska, Anna, Wawrzyniak, Marcin, Rutkowska-Wlodarczyk, Izabela, Kaczmarek, Leszek, Wlodarczyk, Jakub
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033
cites cdi_FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033
container_end_page 27757
container_issue 1
container_start_page 27757
container_title Scientific reports
container_volume 6
creator Magnowska, Marta
Gorkiewicz, Tomasz
Suska, Anna
Wawrzyniak, Marcin
Rutkowska-Wlodarczyk, Izabela
Kaczmarek, Leszek
Wlodarczyk, Jakub
description Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP) and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation.
doi_str_mv 10.1038/srep27757
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4901294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1795870572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMobsxd-Aek4I0K1eQ0aVIQQcb8gIk38zqkWTo7-mXSDvbvTdkcU3Nzwnkf3nMOL0LnBN8SHIk7Z00DnDN-hIaAKQshAjg--A_Q2LkV9o9BQklyigbAQQBQMUT3c6sql5uqDaaTt6CxdWuUM4HSbb7O203fKX3PBW5TqabNddAUyvnqxTN0kqnCmfGujtDH03Q-eQln78-vk8dZqGkk2lAnQmNG45RlOqaMkBQybkTKs1irmERioTMuSIozFaWUUgDgMV2ASIwxGkfRCD1sfZsuLc1C-22tKmRj81LZjaxVLn8rVf4pl_Va0gQTf7M3uNoZ2PqrM66VZe60KQpVmbpzkvCECY4ZB49e_kFXdWcrf15PxZBgFvXU9ZbStnY-gWy_DMGyj0XuY_HsxeH2e_InBA_cbAHnpWpp7MHIf27fgC2XDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796290532</pqid></control><display><type>article</type><title>Transient ECM protease activity promotes synaptic plasticity</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Magnowska, Marta ; Gorkiewicz, Tomasz ; Suska, Anna ; Wawrzyniak, Marcin ; Rutkowska-Wlodarczyk, Izabela ; Kaczmarek, Leszek ; Wlodarczyk, Jakub</creator><creatorcontrib>Magnowska, Marta ; Gorkiewicz, Tomasz ; Suska, Anna ; Wawrzyniak, Marcin ; Rutkowska-Wlodarczyk, Izabela ; Kaczmarek, Leszek ; Wlodarczyk, Jakub</creatorcontrib><description>Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP) and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep27757</identifier><identifier>PMID: 27282248</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 14 ; 14/19 ; 14/35 ; 631/378/1595/1554 ; 631/378/2591/2592 ; 631/378/340 ; 82 ; 96 ; Animals ; Dendritic Spines - drug effects ; Dendritic Spines - metabolism ; Excitatory Postsynaptic Potentials - drug effects ; Extracellular Matrix - metabolism ; Hippocampus - drug effects ; Hippocampus - physiology ; Humanities and Social Sciences ; Humans ; Long-Term Potentiation - drug effects ; Male ; Matrix Metalloproteinase 9 - metabolism ; Matrix Metalloproteinase Inhibitors - pharmacology ; Models, Biological ; Morphology ; multidisciplinary ; Neuronal Plasticity - drug effects ; Peptide Hydrolases - metabolism ; Physiology ; Plasticity ; Proteolysis - drug effects ; Rats, Transgenic ; Receptors, N-Methyl-D-Aspartate - metabolism ; Recombinant Proteins - metabolism ; Science ; Synapses - drug effects ; Synapses - metabolism ; Time Factors ; Tissue Inhibitor of Metalloproteinase-1 - metabolism</subject><ispartof>Scientific reports, 2016-06, Vol.6 (1), p.27757-27757, Article 27757</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033</citedby><cites>FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1796290532/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1796290532?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27282248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Magnowska, Marta</creatorcontrib><creatorcontrib>Gorkiewicz, Tomasz</creatorcontrib><creatorcontrib>Suska, Anna</creatorcontrib><creatorcontrib>Wawrzyniak, Marcin</creatorcontrib><creatorcontrib>Rutkowska-Wlodarczyk, Izabela</creatorcontrib><creatorcontrib>Kaczmarek, Leszek</creatorcontrib><creatorcontrib>Wlodarczyk, Jakub</creatorcontrib><title>Transient ECM protease activity promotes synaptic plasticity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP) and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation.</description><subject>13/109</subject><subject>14</subject><subject>14/19</subject><subject>14/35</subject><subject>631/378/1595/1554</subject><subject>631/378/2591/2592</subject><subject>631/378/340</subject><subject>82</subject><subject>96</subject><subject>Animals</subject><subject>Dendritic Spines - drug effects</subject><subject>Dendritic Spines - metabolism</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Male</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>Matrix Metalloproteinase Inhibitors - pharmacology</subject><subject>Models, Biological</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Physiology</subject><subject>Plasticity</subject><subject>Proteolysis - drug effects</subject><subject>Rats, Transgenic</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Recombinant Proteins - metabolism</subject><subject>Science</subject><subject>Synapses - drug effects</subject><subject>Synapses - metabolism</subject><subject>Time Factors</subject><subject>Tissue Inhibitor of Metalloproteinase-1 - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1LwzAUhoMobsxd-Aek4I0K1eQ0aVIQQcb8gIk38zqkWTo7-mXSDvbvTdkcU3Nzwnkf3nMOL0LnBN8SHIk7Z00DnDN-hIaAKQshAjg--A_Q2LkV9o9BQklyigbAQQBQMUT3c6sql5uqDaaTt6CxdWuUM4HSbb7O203fKX3PBW5TqabNddAUyvnqxTN0kqnCmfGujtDH03Q-eQln78-vk8dZqGkk2lAnQmNG45RlOqaMkBQybkTKs1irmERioTMuSIozFaWUUgDgMV2ASIwxGkfRCD1sfZsuLc1C-22tKmRj81LZjaxVLn8rVf4pl_Va0gQTf7M3uNoZ2PqrM66VZe60KQpVmbpzkvCECY4ZB49e_kFXdWcrf15PxZBgFvXU9ZbStnY-gWy_DMGyj0XuY_HsxeH2e_InBA_cbAHnpWpp7MHIf27fgC2XDg</recordid><startdate>20160610</startdate><enddate>20160610</enddate><creator>Magnowska, Marta</creator><creator>Gorkiewicz, Tomasz</creator><creator>Suska, Anna</creator><creator>Wawrzyniak, Marcin</creator><creator>Rutkowska-Wlodarczyk, Izabela</creator><creator>Kaczmarek, Leszek</creator><creator>Wlodarczyk, Jakub</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160610</creationdate><title>Transient ECM protease activity promotes synaptic plasticity</title><author>Magnowska, Marta ; Gorkiewicz, Tomasz ; Suska, Anna ; Wawrzyniak, Marcin ; Rutkowska-Wlodarczyk, Izabela ; Kaczmarek, Leszek ; Wlodarczyk, Jakub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/109</topic><topic>14</topic><topic>14/19</topic><topic>14/35</topic><topic>631/378/1595/1554</topic><topic>631/378/2591/2592</topic><topic>631/378/340</topic><topic>82</topic><topic>96</topic><topic>Animals</topic><topic>Dendritic Spines - drug effects</topic><topic>Dendritic Spines - metabolism</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Male</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>Matrix Metalloproteinase Inhibitors - pharmacology</topic><topic>Models, Biological</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Physiology</topic><topic>Plasticity</topic><topic>Proteolysis - drug effects</topic><topic>Rats, Transgenic</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Recombinant Proteins - metabolism</topic><topic>Science</topic><topic>Synapses - drug effects</topic><topic>Synapses - metabolism</topic><topic>Time Factors</topic><topic>Tissue Inhibitor of Metalloproteinase-1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magnowska, Marta</creatorcontrib><creatorcontrib>Gorkiewicz, Tomasz</creatorcontrib><creatorcontrib>Suska, Anna</creatorcontrib><creatorcontrib>Wawrzyniak, Marcin</creatorcontrib><creatorcontrib>Rutkowska-Wlodarczyk, Izabela</creatorcontrib><creatorcontrib>Kaczmarek, Leszek</creatorcontrib><creatorcontrib>Wlodarczyk, Jakub</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magnowska, Marta</au><au>Gorkiewicz, Tomasz</au><au>Suska, Anna</au><au>Wawrzyniak, Marcin</au><au>Rutkowska-Wlodarczyk, Izabela</au><au>Kaczmarek, Leszek</au><au>Wlodarczyk, Jakub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient ECM protease activity promotes synaptic plasticity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-06-10</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>27757</spage><epage>27757</epage><pages>27757-27757</pages><artnum>27757</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP) and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27282248</pmid><doi>10.1038/srep27757</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-06, Vol.6 (1), p.27757-27757, Article 27757
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4901294
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/109
14
14/19
14/35
631/378/1595/1554
631/378/2591/2592
631/378/340
82
96
Animals
Dendritic Spines - drug effects
Dendritic Spines - metabolism
Excitatory Postsynaptic Potentials - drug effects
Extracellular Matrix - metabolism
Hippocampus - drug effects
Hippocampus - physiology
Humanities and Social Sciences
Humans
Long-Term Potentiation - drug effects
Male
Matrix Metalloproteinase 9 - metabolism
Matrix Metalloproteinase Inhibitors - pharmacology
Models, Biological
Morphology
multidisciplinary
Neuronal Plasticity - drug effects
Peptide Hydrolases - metabolism
Physiology
Plasticity
Proteolysis - drug effects
Rats, Transgenic
Receptors, N-Methyl-D-Aspartate - metabolism
Recombinant Proteins - metabolism
Science
Synapses - drug effects
Synapses - metabolism
Time Factors
Tissue Inhibitor of Metalloproteinase-1 - metabolism
title Transient ECM protease activity promotes synaptic plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20ECM%20protease%20activity%20promotes%20synaptic%20plasticity&rft.jtitle=Scientific%20reports&rft.au=Magnowska,%20Marta&rft.date=2016-06-10&rft.volume=6&rft.issue=1&rft.spage=27757&rft.epage=27757&rft.pages=27757-27757&rft.artnum=27757&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep27757&rft_dat=%3Cproquest_pubme%3E1795870572%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1796290532&rft_id=info:pmid/27282248&rfr_iscdi=true