Loading…
Transient ECM protease activity promotes synaptic plasticity
Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of p...
Saved in:
Published in: | Scientific reports 2016-06, Vol.6 (1), p.27757-27757, Article 27757 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033 |
container_end_page | 27757 |
container_issue | 1 |
container_start_page | 27757 |
container_title | Scientific reports |
container_volume | 6 |
creator | Magnowska, Marta Gorkiewicz, Tomasz Suska, Anna Wawrzyniak, Marcin Rutkowska-Wlodarczyk, Izabela Kaczmarek, Leszek Wlodarczyk, Jakub |
description | Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP) and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. |
doi_str_mv | 10.1038/srep27757 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4901294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1795870572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMobsxd-Aek4I0K1eQ0aVIQQcb8gIk38zqkWTo7-mXSDvbvTdkcU3Nzwnkf3nMOL0LnBN8SHIk7Z00DnDN-hIaAKQshAjg--A_Q2LkV9o9BQklyigbAQQBQMUT3c6sql5uqDaaTt6CxdWuUM4HSbb7O203fKX3PBW5TqabNddAUyvnqxTN0kqnCmfGujtDH03Q-eQln78-vk8dZqGkk2lAnQmNG45RlOqaMkBQybkTKs1irmERioTMuSIozFaWUUgDgMV2ASIwxGkfRCD1sfZsuLc1C-22tKmRj81LZjaxVLn8rVf4pl_Va0gQTf7M3uNoZ2PqrM66VZe60KQpVmbpzkvCECY4ZB49e_kFXdWcrf15PxZBgFvXU9ZbStnY-gWy_DMGyj0XuY_HsxeH2e_InBA_cbAHnpWpp7MHIf27fgC2XDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796290532</pqid></control><display><type>article</type><title>Transient ECM protease activity promotes synaptic plasticity</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Magnowska, Marta ; Gorkiewicz, Tomasz ; Suska, Anna ; Wawrzyniak, Marcin ; Rutkowska-Wlodarczyk, Izabela ; Kaczmarek, Leszek ; Wlodarczyk, Jakub</creator><creatorcontrib>Magnowska, Marta ; Gorkiewicz, Tomasz ; Suska, Anna ; Wawrzyniak, Marcin ; Rutkowska-Wlodarczyk, Izabela ; Kaczmarek, Leszek ; Wlodarczyk, Jakub</creatorcontrib><description>Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP) and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep27757</identifier><identifier>PMID: 27282248</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/109 ; 14 ; 14/19 ; 14/35 ; 631/378/1595/1554 ; 631/378/2591/2592 ; 631/378/340 ; 82 ; 96 ; Animals ; Dendritic Spines - drug effects ; Dendritic Spines - metabolism ; Excitatory Postsynaptic Potentials - drug effects ; Extracellular Matrix - metabolism ; Hippocampus - drug effects ; Hippocampus - physiology ; Humanities and Social Sciences ; Humans ; Long-Term Potentiation - drug effects ; Male ; Matrix Metalloproteinase 9 - metabolism ; Matrix Metalloproteinase Inhibitors - pharmacology ; Models, Biological ; Morphology ; multidisciplinary ; Neuronal Plasticity - drug effects ; Peptide Hydrolases - metabolism ; Physiology ; Plasticity ; Proteolysis - drug effects ; Rats, Transgenic ; Receptors, N-Methyl-D-Aspartate - metabolism ; Recombinant Proteins - metabolism ; Science ; Synapses - drug effects ; Synapses - metabolism ; Time Factors ; Tissue Inhibitor of Metalloproteinase-1 - metabolism</subject><ispartof>Scientific reports, 2016-06, Vol.6 (1), p.27757-27757, Article 27757</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033</citedby><cites>FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1796290532/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1796290532?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27282248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Magnowska, Marta</creatorcontrib><creatorcontrib>Gorkiewicz, Tomasz</creatorcontrib><creatorcontrib>Suska, Anna</creatorcontrib><creatorcontrib>Wawrzyniak, Marcin</creatorcontrib><creatorcontrib>Rutkowska-Wlodarczyk, Izabela</creatorcontrib><creatorcontrib>Kaczmarek, Leszek</creatorcontrib><creatorcontrib>Wlodarczyk, Jakub</creatorcontrib><title>Transient ECM protease activity promotes synaptic plasticity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP) and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation.</description><subject>13/109</subject><subject>14</subject><subject>14/19</subject><subject>14/35</subject><subject>631/378/1595/1554</subject><subject>631/378/2591/2592</subject><subject>631/378/340</subject><subject>82</subject><subject>96</subject><subject>Animals</subject><subject>Dendritic Spines - drug effects</subject><subject>Dendritic Spines - metabolism</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Male</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>Matrix Metalloproteinase Inhibitors - pharmacology</subject><subject>Models, Biological</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Physiology</subject><subject>Plasticity</subject><subject>Proteolysis - drug effects</subject><subject>Rats, Transgenic</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Recombinant Proteins - metabolism</subject><subject>Science</subject><subject>Synapses - drug effects</subject><subject>Synapses - metabolism</subject><subject>Time Factors</subject><subject>Tissue Inhibitor of Metalloproteinase-1 - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV1LwzAUhoMobsxd-Aek4I0K1eQ0aVIQQcb8gIk38zqkWTo7-mXSDvbvTdkcU3Nzwnkf3nMOL0LnBN8SHIk7Z00DnDN-hIaAKQshAjg--A_Q2LkV9o9BQklyigbAQQBQMUT3c6sql5uqDaaTt6CxdWuUM4HSbb7O203fKX3PBW5TqabNddAUyvnqxTN0kqnCmfGujtDH03Q-eQln78-vk8dZqGkk2lAnQmNG45RlOqaMkBQybkTKs1irmERioTMuSIozFaWUUgDgMV2ASIwxGkfRCD1sfZsuLc1C-22tKmRj81LZjaxVLn8rVf4pl_Va0gQTf7M3uNoZ2PqrM66VZe60KQpVmbpzkvCECY4ZB49e_kFXdWcrf15PxZBgFvXU9ZbStnY-gWy_DMGyj0XuY_HsxeH2e_InBA_cbAHnpWpp7MHIf27fgC2XDg</recordid><startdate>20160610</startdate><enddate>20160610</enddate><creator>Magnowska, Marta</creator><creator>Gorkiewicz, Tomasz</creator><creator>Suska, Anna</creator><creator>Wawrzyniak, Marcin</creator><creator>Rutkowska-Wlodarczyk, Izabela</creator><creator>Kaczmarek, Leszek</creator><creator>Wlodarczyk, Jakub</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160610</creationdate><title>Transient ECM protease activity promotes synaptic plasticity</title><author>Magnowska, Marta ; Gorkiewicz, Tomasz ; Suska, Anna ; Wawrzyniak, Marcin ; Rutkowska-Wlodarczyk, Izabela ; Kaczmarek, Leszek ; Wlodarczyk, Jakub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/109</topic><topic>14</topic><topic>14/19</topic><topic>14/35</topic><topic>631/378/1595/1554</topic><topic>631/378/2591/2592</topic><topic>631/378/340</topic><topic>82</topic><topic>96</topic><topic>Animals</topic><topic>Dendritic Spines - drug effects</topic><topic>Dendritic Spines - metabolism</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Male</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>Matrix Metalloproteinase Inhibitors - pharmacology</topic><topic>Models, Biological</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Physiology</topic><topic>Plasticity</topic><topic>Proteolysis - drug effects</topic><topic>Rats, Transgenic</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Recombinant Proteins - metabolism</topic><topic>Science</topic><topic>Synapses - drug effects</topic><topic>Synapses - metabolism</topic><topic>Time Factors</topic><topic>Tissue Inhibitor of Metalloproteinase-1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magnowska, Marta</creatorcontrib><creatorcontrib>Gorkiewicz, Tomasz</creatorcontrib><creatorcontrib>Suska, Anna</creatorcontrib><creatorcontrib>Wawrzyniak, Marcin</creatorcontrib><creatorcontrib>Rutkowska-Wlodarczyk, Izabela</creatorcontrib><creatorcontrib>Kaczmarek, Leszek</creatorcontrib><creatorcontrib>Wlodarczyk, Jakub</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magnowska, Marta</au><au>Gorkiewicz, Tomasz</au><au>Suska, Anna</au><au>Wawrzyniak, Marcin</au><au>Rutkowska-Wlodarczyk, Izabela</au><au>Kaczmarek, Leszek</au><au>Wlodarczyk, Jakub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient ECM protease activity promotes synaptic plasticity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-06-10</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>27757</spage><epage>27757</epage><pages>27757-27757</pages><artnum>27757</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP) and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27282248</pmid><doi>10.1038/srep27757</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-06, Vol.6 (1), p.27757-27757, Article 27757 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4901294 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/109 14 14/19 14/35 631/378/1595/1554 631/378/2591/2592 631/378/340 82 96 Animals Dendritic Spines - drug effects Dendritic Spines - metabolism Excitatory Postsynaptic Potentials - drug effects Extracellular Matrix - metabolism Hippocampus - drug effects Hippocampus - physiology Humanities and Social Sciences Humans Long-Term Potentiation - drug effects Male Matrix Metalloproteinase 9 - metabolism Matrix Metalloproteinase Inhibitors - pharmacology Models, Biological Morphology multidisciplinary Neuronal Plasticity - drug effects Peptide Hydrolases - metabolism Physiology Plasticity Proteolysis - drug effects Rats, Transgenic Receptors, N-Methyl-D-Aspartate - metabolism Recombinant Proteins - metabolism Science Synapses - drug effects Synapses - metabolism Time Factors Tissue Inhibitor of Metalloproteinase-1 - metabolism |
title | Transient ECM protease activity promotes synaptic plasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20ECM%20protease%20activity%20promotes%20synaptic%20plasticity&rft.jtitle=Scientific%20reports&rft.au=Magnowska,%20Marta&rft.date=2016-06-10&rft.volume=6&rft.issue=1&rft.spage=27757&rft.epage=27757&rft.pages=27757-27757&rft.artnum=27757&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep27757&rft_dat=%3Cproquest_pubme%3E1795870572%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-c98c0546b5fc64511b2f7e8b7f6ca6138dcf781b0fa3b444222764d289eeec033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1796290532&rft_id=info:pmid/27282248&rfr_iscdi=true |