Loading…

Robust electric-field tunable opto-electrical behavior in Pt-NiO-Pt planar structures

Capacitor-like metal-NiO-metal structures have attracted large interest in non-volatile memory applications based on electric field control of resistance, known as resistive switching (RS). Formation of conducting nanofilaments by the application of an electric field (electroformation) is considered...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-06, Vol.6 (1), p.28007-28007, Article 28007
Main Authors: Rebello, A., Adeyeye, A. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Capacitor-like metal-NiO-metal structures have attracted large interest in non-volatile memory applications based on electric field control of resistance, known as resistive switching (RS). Formation of conducting nanofilaments by the application of an electric field (electroformation) is considered an important pre-requisite for RS. Besides RS, due to the wide band gap and p-type semiconducting nature, NiO has been used to fabricate heterojunctions for photodetector applications. However, very little is known about the electrical and opto-electrical properties of NiO films in planar structure. Here, we demonstrate intriguing photoresponse and electrical behavior in electroformed Pt-NiO-Pt planar structures. While the pristine devices show ohmic electrical behavior and negligible photoresponse, the electroformed devices exhibit a nonlinear rectification behavior and a remarkable photoresponse at low voltage biases. More interestingly, the devices show a dramatic change of sign of rectification under light illumination at higher voltage biases. A polarity dependent and robust gain phenomenon is demonstrated in these devices. The large sensitivity, fast response, simple design and ease of preparation of these planar structures make them attractive for integration with current circuit technologies and various novel opto-electrical applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep28007