Loading…
Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles
Membrane‐less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the abili...
Saved in:
Published in: | The EMBO journal 2016-06, Vol.35 (12), p.1254-1275 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5519-b0ac1a895c12acebe4e2c68266e6e8f587f7babbb6f3f8ffb2cd7ff9434edcbd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5519-b0ac1a895c12acebe4e2c68266e6e8f587f7babbb6f3f8ffb2cd7ff9434edcbd3 |
container_end_page | 1275 |
container_issue | 12 |
container_start_page | 1254 |
container_title | The EMBO journal |
container_volume | 35 |
creator | Marzahn, Melissa R Marada, Suresh Lee, Jihun Nourse, Amanda Kenrick, Sophia Zhao, Huaying Ben-Nissan, Gili Kolaitis, Regina-Maria Peters, Jennifer L Pounds, Stanley Errington, Wesley J Privé, Gilbert G Taylor, J Paul Sharon, Michal Schuck, Peter Ogden, Stacey K Mittag, Tanja |
description | Membrane‐less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher‐order assemblies influences the recruitment of the speckle‐type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin‐3‐RING ubiquitin ligase (CRL3) substrate adaptor, self‐associates into higher‐order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild‐type SPOP localizes to liquid nuclear speckles, self‐association‐deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB‐mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration‐dependent populations of the resulting oligomeric species. Higher‐order oligomerization of SPOP stimulates CRL3
SPOP
ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher‐order protein self‐association may be a general mechanism to concentrate functional components in membrane‐less cellular bodies.
Synopsis
SPOP, a ubiquitin ligase substrate receptor and tumor suppressor, self‐associates indefinitely into large oligomers via the synergistic function of its tandem dimerization domains. The resulting oligomers are recruited to liquid nuclear speckles, likely generating hotspots of SPOP‐mediated ubiquitination.
SPOP localizes to liquid nuclear bodies.
Self‐association‐deficient SPOP mutants lose their localization to nuclear speckles.
SPOP forms labile higher‐order oligomers through tandem self‐association domains and an isodesmic mechanism.
The BTB self‐association‐deficient mutant has a dominant‐negative effect on Hedgehog signaling in the developing fly wing.
Dynamic, higher‐order self‐association may be a general mechanism to concentrate functional components in membrane‐less cellular bodies.
Graphical Abstract
Self‐association of the ubiquitin ligase adaptor and tumor suppressor SPOP is required for its recruitment to liquid nuclear bodies, likely generating hotspots of SPOP‐mediated ubiquitination. |
doi_str_mv | 10.15252/embj.201593169 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4910529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4090354781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5519-b0ac1a895c12acebe4e2c68266e6e8f587f7babbb6f3f8ffb2cd7ff9434edcbd3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEokvhzA1F4sIlre3EdsIBqVSlpSr9UFtV4mLZznjrrRNv7QQofz2maVcLEuJkafx7b97oZdlrjLYwJZRsQ6cWWwRh2pSYNU-yGa4YKgji9Gk2Q4ThosJ1s5G9iHGBEKI1x8-zDcIJQXXVzLLLAzu_hlD40ELIvbNz30GwP-VgfZ8vg-_8ADF3Xkv3OPUmPz89Oc0Hnzt7O9o270ftQIY8LkHfOIgvs2dGugivHt7N7PLT3sXuQXF0sv95d-eo0JTiplBIaizrhmpMpAYFFRDNasIYMKhNCmu4kkopZkpTG6OIbrkxTVVW0GrVlpvZh8l3OaoujaAfgnRiGWwnw53w0oo_f3p7Leb-m6gajChpksG7B4Pgb0eIg-hs1OCc7MGPUWDe8JqzElcJffsXuvBj6NN59xRJF2GaqO2J0sHHGMCswmAk7isTvysTq8qS4s36DSv-saMEvJ-A79bB3f_8xN6Xj4fr7mgSx6Tr5xDWUv8zUDFJbBzgx2qfDDeC8ZJTcXW8L87Z8dezw4szcVX-Aqw1xdM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797255115</pqid></control><display><type>article</type><title>Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles</title><source>PubMed Central Free</source><creator>Marzahn, Melissa R ; Marada, Suresh ; Lee, Jihun ; Nourse, Amanda ; Kenrick, Sophia ; Zhao, Huaying ; Ben-Nissan, Gili ; Kolaitis, Regina-Maria ; Peters, Jennifer L ; Pounds, Stanley ; Errington, Wesley J ; Privé, Gilbert G ; Taylor, J Paul ; Sharon, Michal ; Schuck, Peter ; Ogden, Stacey K ; Mittag, Tanja</creator><creatorcontrib>Marzahn, Melissa R ; Marada, Suresh ; Lee, Jihun ; Nourse, Amanda ; Kenrick, Sophia ; Zhao, Huaying ; Ben-Nissan, Gili ; Kolaitis, Regina-Maria ; Peters, Jennifer L ; Pounds, Stanley ; Errington, Wesley J ; Privé, Gilbert G ; Taylor, J Paul ; Sharon, Michal ; Schuck, Peter ; Ogden, Stacey K ; Mittag, Tanja</creatorcontrib><description>Membrane‐less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher‐order assemblies influences the recruitment of the speckle‐type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin‐3‐RING ubiquitin ligase (CRL3) substrate adaptor, self‐associates into higher‐order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild‐type SPOP localizes to liquid nuclear speckles, self‐association‐deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB‐mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration‐dependent populations of the resulting oligomeric species. Higher‐order oligomerization of SPOP stimulates CRL3
SPOP
ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher‐order protein self‐association may be a general mechanism to concentrate functional components in membrane‐less cellular bodies.
Synopsis
SPOP, a ubiquitin ligase substrate receptor and tumor suppressor, self‐associates indefinitely into large oligomers via the synergistic function of its tandem dimerization domains. The resulting oligomers are recruited to liquid nuclear speckles, likely generating hotspots of SPOP‐mediated ubiquitination.
SPOP localizes to liquid nuclear bodies.
Self‐association‐deficient SPOP mutants lose their localization to nuclear speckles.
SPOP forms labile higher‐order oligomers through tandem self‐association domains and an isodesmic mechanism.
The BTB self‐association‐deficient mutant has a dominant‐negative effect on Hedgehog signaling in the developing fly wing.
Dynamic, higher‐order self‐association may be a general mechanism to concentrate functional components in membrane‐less cellular bodies.
Graphical Abstract
Self‐association of the ubiquitin ligase adaptor and tumor suppressor SPOP is required for its recruitment to liquid nuclear bodies, likely generating hotspots of SPOP‐mediated ubiquitination.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201593169</identifier><identifier>PMID: 27220849</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Cell Nucleus - metabolism ; EMBO31 ; EMBO32 ; EMBO40 ; Humans ; isodesmic self-association ; Kruppel-Like Transcription Factors - metabolism ; Localization ; Macromolecular Substances - metabolism ; membrane-less organelle ; Nerve Tissue Proteins - metabolism ; Nuclear Proteins - metabolism ; prostate cancer ; Protein Binding ; Protein Domains ; Protein Multimerization ; Proteins ; Repressor Proteins - metabolism ; speckle-type POZ protein ; ubiquitin ligase ; Ubiquitination ; Zinc Finger Protein Gli3</subject><ispartof>The EMBO journal, 2016-06, Vol.35 (12), p.1254-1275</ispartof><rights>The Authors. Published under the terms of the CC BY NC ND 4.0 license 2016</rights><rights>2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2016 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5519-b0ac1a895c12acebe4e2c68266e6e8f587f7babbb6f3f8ffb2cd7ff9434edcbd3</citedby><cites>FETCH-LOGICAL-c5519-b0ac1a895c12acebe4e2c68266e6e8f587f7babbb6f3f8ffb2cd7ff9434edcbd3</cites><orcidid>0000-0002-1827-3811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910529/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910529/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27220849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marzahn, Melissa R</creatorcontrib><creatorcontrib>Marada, Suresh</creatorcontrib><creatorcontrib>Lee, Jihun</creatorcontrib><creatorcontrib>Nourse, Amanda</creatorcontrib><creatorcontrib>Kenrick, Sophia</creatorcontrib><creatorcontrib>Zhao, Huaying</creatorcontrib><creatorcontrib>Ben-Nissan, Gili</creatorcontrib><creatorcontrib>Kolaitis, Regina-Maria</creatorcontrib><creatorcontrib>Peters, Jennifer L</creatorcontrib><creatorcontrib>Pounds, Stanley</creatorcontrib><creatorcontrib>Errington, Wesley J</creatorcontrib><creatorcontrib>Privé, Gilbert G</creatorcontrib><creatorcontrib>Taylor, J Paul</creatorcontrib><creatorcontrib>Sharon, Michal</creatorcontrib><creatorcontrib>Schuck, Peter</creatorcontrib><creatorcontrib>Ogden, Stacey K</creatorcontrib><creatorcontrib>Mittag, Tanja</creatorcontrib><title>Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Membrane‐less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher‐order assemblies influences the recruitment of the speckle‐type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin‐3‐RING ubiquitin ligase (CRL3) substrate adaptor, self‐associates into higher‐order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild‐type SPOP localizes to liquid nuclear speckles, self‐association‐deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB‐mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration‐dependent populations of the resulting oligomeric species. Higher‐order oligomerization of SPOP stimulates CRL3
SPOP
ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher‐order protein self‐association may be a general mechanism to concentrate functional components in membrane‐less cellular bodies.
Synopsis
SPOP, a ubiquitin ligase substrate receptor and tumor suppressor, self‐associates indefinitely into large oligomers via the synergistic function of its tandem dimerization domains. The resulting oligomers are recruited to liquid nuclear speckles, likely generating hotspots of SPOP‐mediated ubiquitination.
SPOP localizes to liquid nuclear bodies.
Self‐association‐deficient SPOP mutants lose their localization to nuclear speckles.
SPOP forms labile higher‐order oligomers through tandem self‐association domains and an isodesmic mechanism.
The BTB self‐association‐deficient mutant has a dominant‐negative effect on Hedgehog signaling in the developing fly wing.
Dynamic, higher‐order self‐association may be a general mechanism to concentrate functional components in membrane‐less cellular bodies.
Graphical Abstract
Self‐association of the ubiquitin ligase adaptor and tumor suppressor SPOP is required for its recruitment to liquid nuclear bodies, likely generating hotspots of SPOP‐mediated ubiquitination.</description><subject>Cell Nucleus - metabolism</subject><subject>EMBO31</subject><subject>EMBO32</subject><subject>EMBO40</subject><subject>Humans</subject><subject>isodesmic self-association</subject><subject>Kruppel-Like Transcription Factors - metabolism</subject><subject>Localization</subject><subject>Macromolecular Substances - metabolism</subject><subject>membrane-less organelle</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nuclear Proteins - metabolism</subject><subject>prostate cancer</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Repressor Proteins - metabolism</subject><subject>speckle-type POZ protein</subject><subject>ubiquitin ligase</subject><subject>Ubiquitination</subject><subject>Zinc Finger Protein Gli3</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1v1DAQxSMEokvhzA1F4sIlre3EdsIBqVSlpSr9UFtV4mLZznjrrRNv7QQofz2maVcLEuJkafx7b97oZdlrjLYwJZRsQ6cWWwRh2pSYNU-yGa4YKgji9Gk2Q4ThosJ1s5G9iHGBEKI1x8-zDcIJQXXVzLLLAzu_hlD40ELIvbNz30GwP-VgfZ8vg-_8ADF3Xkv3OPUmPz89Oc0Hnzt7O9o270ftQIY8LkHfOIgvs2dGugivHt7N7PLT3sXuQXF0sv95d-eo0JTiplBIaizrhmpMpAYFFRDNasIYMKhNCmu4kkopZkpTG6OIbrkxTVVW0GrVlpvZh8l3OaoujaAfgnRiGWwnw53w0oo_f3p7Leb-m6gajChpksG7B4Pgb0eIg-hs1OCc7MGPUWDe8JqzElcJffsXuvBj6NN59xRJF2GaqO2J0sHHGMCswmAk7isTvysTq8qS4s36DSv-saMEvJ-A79bB3f_8xN6Xj4fr7mgSx6Tr5xDWUv8zUDFJbBzgx2qfDDeC8ZJTcXW8L87Z8dezw4szcVX-Aqw1xdM</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Marzahn, Melissa R</creator><creator>Marada, Suresh</creator><creator>Lee, Jihun</creator><creator>Nourse, Amanda</creator><creator>Kenrick, Sophia</creator><creator>Zhao, Huaying</creator><creator>Ben-Nissan, Gili</creator><creator>Kolaitis, Regina-Maria</creator><creator>Peters, Jennifer L</creator><creator>Pounds, Stanley</creator><creator>Errington, Wesley J</creator><creator>Privé, Gilbert G</creator><creator>Taylor, J Paul</creator><creator>Sharon, Michal</creator><creator>Schuck, Peter</creator><creator>Ogden, Stacey K</creator><creator>Mittag, Tanja</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1827-3811</orcidid></search><sort><creationdate>20160615</creationdate><title>Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles</title><author>Marzahn, Melissa R ; Marada, Suresh ; Lee, Jihun ; Nourse, Amanda ; Kenrick, Sophia ; Zhao, Huaying ; Ben-Nissan, Gili ; Kolaitis, Regina-Maria ; Peters, Jennifer L ; Pounds, Stanley ; Errington, Wesley J ; Privé, Gilbert G ; Taylor, J Paul ; Sharon, Michal ; Schuck, Peter ; Ogden, Stacey K ; Mittag, Tanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5519-b0ac1a895c12acebe4e2c68266e6e8f587f7babbb6f3f8ffb2cd7ff9434edcbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cell Nucleus - metabolism</topic><topic>EMBO31</topic><topic>EMBO32</topic><topic>EMBO40</topic><topic>Humans</topic><topic>isodesmic self-association</topic><topic>Kruppel-Like Transcription Factors - metabolism</topic><topic>Localization</topic><topic>Macromolecular Substances - metabolism</topic><topic>membrane-less organelle</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nuclear Proteins - metabolism</topic><topic>prostate cancer</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Repressor Proteins - metabolism</topic><topic>speckle-type POZ protein</topic><topic>ubiquitin ligase</topic><topic>Ubiquitination</topic><topic>Zinc Finger Protein Gli3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzahn, Melissa R</creatorcontrib><creatorcontrib>Marada, Suresh</creatorcontrib><creatorcontrib>Lee, Jihun</creatorcontrib><creatorcontrib>Nourse, Amanda</creatorcontrib><creatorcontrib>Kenrick, Sophia</creatorcontrib><creatorcontrib>Zhao, Huaying</creatorcontrib><creatorcontrib>Ben-Nissan, Gili</creatorcontrib><creatorcontrib>Kolaitis, Regina-Maria</creatorcontrib><creatorcontrib>Peters, Jennifer L</creatorcontrib><creatorcontrib>Pounds, Stanley</creatorcontrib><creatorcontrib>Errington, Wesley J</creatorcontrib><creatorcontrib>Privé, Gilbert G</creatorcontrib><creatorcontrib>Taylor, J Paul</creatorcontrib><creatorcontrib>Sharon, Michal</creatorcontrib><creatorcontrib>Schuck, Peter</creatorcontrib><creatorcontrib>Ogden, Stacey K</creatorcontrib><creatorcontrib>Mittag, Tanja</creatorcontrib><collection>Istex</collection><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzahn, Melissa R</au><au>Marada, Suresh</au><au>Lee, Jihun</au><au>Nourse, Amanda</au><au>Kenrick, Sophia</au><au>Zhao, Huaying</au><au>Ben-Nissan, Gili</au><au>Kolaitis, Regina-Maria</au><au>Peters, Jennifer L</au><au>Pounds, Stanley</au><au>Errington, Wesley J</au><au>Privé, Gilbert G</au><au>Taylor, J Paul</au><au>Sharon, Michal</au><au>Schuck, Peter</au><au>Ogden, Stacey K</au><au>Mittag, Tanja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2016-06-15</date><risdate>2016</risdate><volume>35</volume><issue>12</issue><spage>1254</spage><epage>1275</epage><pages>1254-1275</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Membrane‐less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher‐order assemblies influences the recruitment of the speckle‐type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin‐3‐RING ubiquitin ligase (CRL3) substrate adaptor, self‐associates into higher‐order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild‐type SPOP localizes to liquid nuclear speckles, self‐association‐deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB‐mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration‐dependent populations of the resulting oligomeric species. Higher‐order oligomerization of SPOP stimulates CRL3
SPOP
ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher‐order protein self‐association may be a general mechanism to concentrate functional components in membrane‐less cellular bodies.
Synopsis
SPOP, a ubiquitin ligase substrate receptor and tumor suppressor, self‐associates indefinitely into large oligomers via the synergistic function of its tandem dimerization domains. The resulting oligomers are recruited to liquid nuclear speckles, likely generating hotspots of SPOP‐mediated ubiquitination.
SPOP localizes to liquid nuclear bodies.
Self‐association‐deficient SPOP mutants lose their localization to nuclear speckles.
SPOP forms labile higher‐order oligomers through tandem self‐association domains and an isodesmic mechanism.
The BTB self‐association‐deficient mutant has a dominant‐negative effect on Hedgehog signaling in the developing fly wing.
Dynamic, higher‐order self‐association may be a general mechanism to concentrate functional components in membrane‐less cellular bodies.
Graphical Abstract
Self‐association of the ubiquitin ligase adaptor and tumor suppressor SPOP is required for its recruitment to liquid nuclear bodies, likely generating hotspots of SPOP‐mediated ubiquitination.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>27220849</pmid><doi>10.15252/embj.201593169</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-1827-3811</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2016-06, Vol.35 (12), p.1254-1275 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4910529 |
source | PubMed Central Free |
subjects | Cell Nucleus - metabolism EMBO31 EMBO32 EMBO40 Humans isodesmic self-association Kruppel-Like Transcription Factors - metabolism Localization Macromolecular Substances - metabolism membrane-less organelle Nerve Tissue Proteins - metabolism Nuclear Proteins - metabolism prostate cancer Protein Binding Protein Domains Protein Multimerization Proteins Repressor Proteins - metabolism speckle-type POZ protein ubiquitin ligase Ubiquitination Zinc Finger Protein Gli3 |
title | Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher-order%20oligomerization%20promotes%20localization%20of%20SPOP%20to%20liquid%20nuclear%20speckles&rft.jtitle=The%20EMBO%20journal&rft.au=Marzahn,%20Melissa%20R&rft.date=2016-06-15&rft.volume=35&rft.issue=12&rft.spage=1254&rft.epage=1275&rft.pages=1254-1275&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201593169&rft_dat=%3Cproquest_pubme%3E4090354781%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5519-b0ac1a895c12acebe4e2c68266e6e8f587f7babbb6f3f8ffb2cd7ff9434edcbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1797255115&rft_id=info:pmid/27220849&rfr_iscdi=true |