Loading…

Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance

To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. MPs of varying magnetite content were applied to primary-derived rat cortical astrocyt...

Full description

Saved in:
Bibliographic Details
Published in:Nanomedicine (London, England) England), 2016-02, Vol.11 (4), p.345-358
Main Authors: Tickle, Jacqueline A, Jenkins, Stuart I, Polyak, Boris, Pickard, Mark R, Chari, Divya M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c453t-67932e5ae45501b7b644d0b64641c34952d96151b09723c249e2bf1cbc28a8943
cites cdi_FETCH-LOGICAL-c453t-67932e5ae45501b7b644d0b64641c34952d96151b09723c249e2bf1cbc28a8943
container_end_page 358
container_issue 4
container_start_page 345
container_title Nanomedicine (London, England)
container_volume 11
creator Tickle, Jacqueline A
Jenkins, Stuart I
Polyak, Boris
Pickard, Mark R
Chari, Divya M
description To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly 'asymmetric'. These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization.
doi_str_mv 10.2217/nnm.15.202
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4910955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2321534471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-67932e5ae45501b7b644d0b64641c34952d96151b09723c249e2bf1cbc28a8943</originalsourceid><addsrcrecordid>eNptkU1r3DAQhkVpaNK0l_6AYuilBLzRt6weCiWkHxDIpT0LWR5vFGxpK8mh---j3U3TD3LRjDTPvMyrQegNwStKiToPYV4RsaKYPkMnRPGulVqy5_uctaLr9DF6mfMtxqKjBL9Ax1SqTijNT9CvyzBEty2xeNdsYoFQvJ2adbyDFHIz23WAfcmmGiZopmgHH9aND83g7_w-D7Ck2uRgmvKHJpdl2O6e5zhAbuL4p9mHG0i-2ODgFToa7ZTh9UM8RT8-X36_-NpeXX_5dvHpqnVcsNJKpRkFYYELgUmvesn5gOspOXGMa0EHLYkgPdaKMke5BtqPxPWOdrbTnJ2ijwfdzdLPMLhqsM5qNsnPNm1NtN78Wwn-xlT7hmuCtRBV4P2DQIo_F8jFzD7vrNoAccmGKEkZV4rv0Hf_obdxSaHaM5RRIhjnilTq7EC5FHNOMD4OQ7DZLdTUhRoiTF1ohd_-Pf4j-nuDFZAHYFzKkiA7D_V3zeFWO7zzAZ5SvgdZnLEX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321534471</pqid></control><display><type>article</type><title>Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance</title><source>PubMed Central(OpenAccess)</source><creator>Tickle, Jacqueline A ; Jenkins, Stuart I ; Polyak, Boris ; Pickard, Mark R ; Chari, Divya M</creator><creatorcontrib>Tickle, Jacqueline A ; Jenkins, Stuart I ; Polyak, Boris ; Pickard, Mark R ; Chari, Divya M</creatorcontrib><description>To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly 'asymmetric'. These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization.</description><identifier>ISSN: 1743-5889</identifier><identifier>EISSN: 1748-6963</identifier><identifier>DOI: 10.2217/nnm.15.202</identifier><identifier>PMID: 26785794</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Animals ; astrocytes ; Astrocytes - cytology ; Cell cycle ; Cell Division ; cell transplantation ; Cells, Cultured ; Endocytosis ; label dilution ; Localization ; Magnetic fields ; magnetite ; Magnetite Nanoparticles - administration &amp; dosage ; magnetolabeling ; Microscopy, Fluorescence ; Nanoparticles ; Nanotechnology ; Nervous system ; polymeric particles ; Rats ; Rats, Sprague-Dawley ; Retention ; Stem cells ; Transplants &amp; implants</subject><ispartof>Nanomedicine (London, England), 2016-02, Vol.11 (4), p.345-358</ispartof><rights>Future Medicine Ltd</rights><rights>Copyright Future Medicine Ltd Feb 2016</rights><rights>Future Medicine Ltd 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-67932e5ae45501b7b644d0b64641c34952d96151b09723c249e2bf1cbc28a8943</citedby><cites>FETCH-LOGICAL-c453t-67932e5ae45501b7b644d0b64641c34952d96151b09723c249e2bf1cbc28a8943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910955/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910955/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26785794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tickle, Jacqueline A</creatorcontrib><creatorcontrib>Jenkins, Stuart I</creatorcontrib><creatorcontrib>Polyak, Boris</creatorcontrib><creatorcontrib>Pickard, Mark R</creatorcontrib><creatorcontrib>Chari, Divya M</creatorcontrib><title>Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance</title><title>Nanomedicine (London, England)</title><addtitle>Nanomedicine (Lond)</addtitle><description>To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly 'asymmetric'. These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization.</description><subject>Animals</subject><subject>astrocytes</subject><subject>Astrocytes - cytology</subject><subject>Cell cycle</subject><subject>Cell Division</subject><subject>cell transplantation</subject><subject>Cells, Cultured</subject><subject>Endocytosis</subject><subject>label dilution</subject><subject>Localization</subject><subject>Magnetic fields</subject><subject>magnetite</subject><subject>Magnetite Nanoparticles - administration &amp; dosage</subject><subject>magnetolabeling</subject><subject>Microscopy, Fluorescence</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nervous system</subject><subject>polymeric particles</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Retention</subject><subject>Stem cells</subject><subject>Transplants &amp; implants</subject><issn>1743-5889</issn><issn>1748-6963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkU1r3DAQhkVpaNK0l_6AYuilBLzRt6weCiWkHxDIpT0LWR5vFGxpK8mh---j3U3TD3LRjDTPvMyrQegNwStKiToPYV4RsaKYPkMnRPGulVqy5_uctaLr9DF6mfMtxqKjBL9Ax1SqTijNT9CvyzBEty2xeNdsYoFQvJ2adbyDFHIz23WAfcmmGiZopmgHH9aND83g7_w-D7Ck2uRgmvKHJpdl2O6e5zhAbuL4p9mHG0i-2ODgFToa7ZTh9UM8RT8-X36_-NpeXX_5dvHpqnVcsNJKpRkFYYELgUmvesn5gOspOXGMa0EHLYkgPdaKMke5BtqPxPWOdrbTnJ2ijwfdzdLPMLhqsM5qNsnPNm1NtN78Wwn-xlT7hmuCtRBV4P2DQIo_F8jFzD7vrNoAccmGKEkZV4rv0Hf_obdxSaHaM5RRIhjnilTq7EC5FHNOMD4OQ7DZLdTUhRoiTF1ohd_-Pf4j-nuDFZAHYFzKkiA7D_V3zeFWO7zzAZ5SvgdZnLEX</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Tickle, Jacqueline A</creator><creator>Jenkins, Stuart I</creator><creator>Polyak, Boris</creator><creator>Pickard, Mark R</creator><creator>Chari, Divya M</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160201</creationdate><title>Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance</title><author>Tickle, Jacqueline A ; Jenkins, Stuart I ; Polyak, Boris ; Pickard, Mark R ; Chari, Divya M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-67932e5ae45501b7b644d0b64641c34952d96151b09723c249e2bf1cbc28a8943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>astrocytes</topic><topic>Astrocytes - cytology</topic><topic>Cell cycle</topic><topic>Cell Division</topic><topic>cell transplantation</topic><topic>Cells, Cultured</topic><topic>Endocytosis</topic><topic>label dilution</topic><topic>Localization</topic><topic>Magnetic fields</topic><topic>magnetite</topic><topic>Magnetite Nanoparticles - administration &amp; dosage</topic><topic>magnetolabeling</topic><topic>Microscopy, Fluorescence</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nervous system</topic><topic>polymeric particles</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Retention</topic><topic>Stem cells</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tickle, Jacqueline A</creatorcontrib><creatorcontrib>Jenkins, Stuart I</creatorcontrib><creatorcontrib>Polyak, Boris</creatorcontrib><creatorcontrib>Pickard, Mark R</creatorcontrib><creatorcontrib>Chari, Divya M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>UK &amp; Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanomedicine (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tickle, Jacqueline A</au><au>Jenkins, Stuart I</au><au>Polyak, Boris</au><au>Pickard, Mark R</au><au>Chari, Divya M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance</atitle><jtitle>Nanomedicine (London, England)</jtitle><addtitle>Nanomedicine (Lond)</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>11</volume><issue>4</issue><spage>345</spage><epage>358</epage><pages>345-358</pages><issn>1743-5889</issn><eissn>1748-6963</eissn><abstract>To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly 'asymmetric'. These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>26785794</pmid><doi>10.2217/nnm.15.202</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1743-5889
ispartof Nanomedicine (London, England), 2016-02, Vol.11 (4), p.345-358
issn 1743-5889
1748-6963
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4910955
source PubMed Central(OpenAccess)
subjects Animals
astrocytes
Astrocytes - cytology
Cell cycle
Cell Division
cell transplantation
Cells, Cultured
Endocytosis
label dilution
Localization
Magnetic fields
magnetite
Magnetite Nanoparticles - administration & dosage
magnetolabeling
Microscopy, Fluorescence
Nanoparticles
Nanotechnology
Nervous system
polymeric particles
Rats
Rats, Sprague-Dawley
Retention
Stem cells
Transplants & implants
title Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endocytotic%20potential%20governs%20magnetic%20particle%20loading%20in%20dividing%20neural%20cells:%20studying%20modes%20of%20particle%20inheritance&rft.jtitle=Nanomedicine%20(London,%20England)&rft.au=Tickle,%20Jacqueline%20A&rft.date=2016-02-01&rft.volume=11&rft.issue=4&rft.spage=345&rft.epage=358&rft.pages=345-358&rft.issn=1743-5889&rft.eissn=1748-6963&rft_id=info:doi/10.2217/nnm.15.202&rft_dat=%3Cproquest_pubme%3E2321534471%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-67932e5ae45501b7b644d0b64641c34952d96151b09723c249e2bf1cbc28a8943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321534471&rft_id=info:pmid/26785794&rfr_iscdi=true