Loading…

Quantifying and predicting Drosophila larvae crawling phenotypes

The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the c...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-06, Vol.6 (1), p.27972-27972, Article 27972
Main Authors: Günther, Maximilian N., Nettesheim, Guilherme, Shubeita, George T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-ec47e4c28e6afde555169bb50dea4bc5aad57f7d46f57a6aa24f84db8b69a80b3
cites cdi_FETCH-LOGICAL-c438t-ec47e4c28e6afde555169bb50dea4bc5aad57f7d46f57a6aa24f84db8b69a80b3
container_end_page 27972
container_issue 1
container_start_page 27972
container_title Scientific reports
container_volume 6
creator Günther, Maximilian N.
Nettesheim, Guilherme
Shubeita, George T.
description The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design.
doi_str_mv 10.1038/srep27972
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4914969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4103355111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ec47e4c28e6afde555169bb50dea4bc5aad57f7d46f57a6aa24f84db8b69a80b3</originalsourceid><addsrcrecordid>eNplkV9r2zAUxUXpWErWh32BEuhLV8gmyZIlvZSOdv-gUArts7iWrxMHR3YlOyPffjLpQtreF11xfhxd3UPIZ0a_MprpbzFgx5VR_IiccCrknGecHx_0E3Ia44qmktwIZj6SCVcZzwxlJ-T6YQDf19W29osZ-HLWBSxr14_X29DGtlvWDcwaCBvAmQvwtxmlbom-7bcdxk_kQwVNxNOXc0qefv54vPk9v7v_9efm-93ciUz3c3RCoXBcYw5ViVJKlpuikLREEIWTAKVUlSpFXkkFOQAXlRZloYvcgKZFNiVXO99uKNZYOvR9gMZ2oV5D2NoWavta8fXSLtqNFYYJk5tkcPFiENrnAWNv13V02DTgsR2iZcpoYzhLu5mS8zfoqh2CT9-zTFPKskzpkfqyo1zaU0qh2g_DqB2jsftoEnt2OP2e_B9EAi53QEySX2A4ePKd2z8JqJn4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800133787</pqid></control><display><type>article</type><title>Quantifying and predicting Drosophila larvae crawling phenotypes</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Günther, Maximilian N. ; Nettesheim, Guilherme ; Shubeita, George T.</creator><creatorcontrib>Günther, Maximilian N. ; Nettesheim, Guilherme ; Shubeita, George T.</creatorcontrib><description>The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep27972</identifier><identifier>PMID: 27323901</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/334/1582/715 ; 631/378 ; 639/766/747 ; Alzheimer Disease - pathology ; Alzheimer's disease ; Animals ; Biometry - methods ; Brownian motion ; Disease Models, Animal ; Drosophila melanogaster - physiology ; Drug Evaluation, Preclinical - methods ; Entomology - methods ; Experiments ; Foraging behavior ; Fragile X Syndrome - pathology ; Genetic Testing - methods ; Humanities and Social Sciences ; Insects ; Larva - physiology ; Larvae ; Locomotion ; multidisciplinary ; Phenotype ; Science</subject><ispartof>Scientific reports, 2016-06, Vol.6 (1), p.27972-27972, Article 27972</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ec47e4c28e6afde555169bb50dea4bc5aad57f7d46f57a6aa24f84db8b69a80b3</citedby><cites>FETCH-LOGICAL-c438t-ec47e4c28e6afde555169bb50dea4bc5aad57f7d46f57a6aa24f84db8b69a80b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1800133787/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1800133787?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27323901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Günther, Maximilian N.</creatorcontrib><creatorcontrib>Nettesheim, Guilherme</creatorcontrib><creatorcontrib>Shubeita, George T.</creatorcontrib><title>Quantifying and predicting Drosophila larvae crawling phenotypes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design.</description><subject>631/1647/334/1582/715</subject><subject>631/378</subject><subject>639/766/747</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Biometry - methods</subject><subject>Brownian motion</subject><subject>Disease Models, Animal</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drug Evaluation, Preclinical - methods</subject><subject>Entomology - methods</subject><subject>Experiments</subject><subject>Foraging behavior</subject><subject>Fragile X Syndrome - pathology</subject><subject>Genetic Testing - methods</subject><subject>Humanities and Social Sciences</subject><subject>Insects</subject><subject>Larva - physiology</subject><subject>Larvae</subject><subject>Locomotion</subject><subject>multidisciplinary</subject><subject>Phenotype</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkV9r2zAUxUXpWErWh32BEuhLV8gmyZIlvZSOdv-gUArts7iWrxMHR3YlOyPffjLpQtreF11xfhxd3UPIZ0a_MprpbzFgx5VR_IiccCrknGecHx_0E3Ia44qmktwIZj6SCVcZzwxlJ-T6YQDf19W29osZ-HLWBSxr14_X29DGtlvWDcwaCBvAmQvwtxmlbom-7bcdxk_kQwVNxNOXc0qefv54vPk9v7v_9efm-93ciUz3c3RCoXBcYw5ViVJKlpuikLREEIWTAKVUlSpFXkkFOQAXlRZloYvcgKZFNiVXO99uKNZYOvR9gMZ2oV5D2NoWavta8fXSLtqNFYYJk5tkcPFiENrnAWNv13V02DTgsR2iZcpoYzhLu5mS8zfoqh2CT9-zTFPKskzpkfqyo1zaU0qh2g_DqB2jsftoEnt2OP2e_B9EAi53QEySX2A4ePKd2z8JqJn4</recordid><startdate>20160621</startdate><enddate>20160621</enddate><creator>Günther, Maximilian N.</creator><creator>Nettesheim, Guilherme</creator><creator>Shubeita, George T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160621</creationdate><title>Quantifying and predicting Drosophila larvae crawling phenotypes</title><author>Günther, Maximilian N. ; Nettesheim, Guilherme ; Shubeita, George T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ec47e4c28e6afde555169bb50dea4bc5aad57f7d46f57a6aa24f84db8b69a80b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/1647/334/1582/715</topic><topic>631/378</topic><topic>639/766/747</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Biometry - methods</topic><topic>Brownian motion</topic><topic>Disease Models, Animal</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drug Evaluation, Preclinical - methods</topic><topic>Entomology - methods</topic><topic>Experiments</topic><topic>Foraging behavior</topic><topic>Fragile X Syndrome - pathology</topic><topic>Genetic Testing - methods</topic><topic>Humanities and Social Sciences</topic><topic>Insects</topic><topic>Larva - physiology</topic><topic>Larvae</topic><topic>Locomotion</topic><topic>multidisciplinary</topic><topic>Phenotype</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Günther, Maximilian N.</creatorcontrib><creatorcontrib>Nettesheim, Guilherme</creatorcontrib><creatorcontrib>Shubeita, George T.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Günther, Maximilian N.</au><au>Nettesheim, Guilherme</au><au>Shubeita, George T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying and predicting Drosophila larvae crawling phenotypes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-06-21</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>27972</spage><epage>27972</epage><pages>27972-27972</pages><artnum>27972</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27323901</pmid><doi>10.1038/srep27972</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-06, Vol.6 (1), p.27972-27972, Article 27972
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4914969
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/1647/334/1582/715
631/378
639/766/747
Alzheimer Disease - pathology
Alzheimer's disease
Animals
Biometry - methods
Brownian motion
Disease Models, Animal
Drosophila melanogaster - physiology
Drug Evaluation, Preclinical - methods
Entomology - methods
Experiments
Foraging behavior
Fragile X Syndrome - pathology
Genetic Testing - methods
Humanities and Social Sciences
Insects
Larva - physiology
Larvae
Locomotion
multidisciplinary
Phenotype
Science
title Quantifying and predicting Drosophila larvae crawling phenotypes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20and%20predicting%20Drosophila%20larvae%20crawling%20phenotypes&rft.jtitle=Scientific%20reports&rft.au=G%C3%BCnther,%20Maximilian%20N.&rft.date=2016-06-21&rft.volume=6&rft.issue=1&rft.spage=27972&rft.epage=27972&rft.pages=27972-27972&rft.artnum=27972&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep27972&rft_dat=%3Cproquest_pubme%3E4103355111%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-ec47e4c28e6afde555169bb50dea4bc5aad57f7d46f57a6aa24f84db8b69a80b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800133787&rft_id=info:pmid/27323901&rfr_iscdi=true