Loading…
Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing
Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enab...
Saved in:
Published in: | Scientific reports 2016-06, Vol.6 (1), p.29081-29081, Article 29081 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c544t-6c92f5b855c8c779bc77f95c158ae6cfdc0baec2c1f767b51d20b9c82bd1fbbf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c544t-6c92f5b855c8c779bc77f95c158ae6cfdc0baec2c1f767b51d20b9c82bd1fbbf3 |
container_end_page | 29081 |
container_issue | 1 |
container_start_page | 29081 |
container_title | Scientific reports |
container_volume | 6 |
creator | Fischer, Konrad Kraner-Scheiber, Simone Petersen, Björn Rieblinger, Beate Buermann, Anna Flisikowska, Tatiana Flisikowski, Krzysztof Christan, Susanne Edlinger, Marlene Baars, Wiebke Kurome, Mayuko Zakhartchenko, Valeri Kessler, Barbara Plotzki, Elena Szczerbal, Izabela Switonski, Marek Denner, Joachim Wolf, Eckhard Schwinzer, Reinhard Niemann, Heiner Kind, Alexander Schnieke, Angelika |
description | Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - ‘gene stacking’ and cointegration of multiple engineered large vectors - ‘combineering’, to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous
GGTA1
and
CMAH
knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before
GGTA1
knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age. |
doi_str_mv | 10.1038/srep29081 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4926246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800703734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-6c92f5b855c8c779bc77f95c158ae6cfdc0baec2c1f767b51d20b9c82bd1fbbf3</originalsourceid><addsrcrecordid>eNplkc9uFSEUxonR2KbtwhcwJG6scSowMDNsTExTtUkTN7om_L1SZ2AExnh3fYz6en0Sub315qosgBx--c75-AB4htEZRu3wJic7E44G_AgcEkRZQ1pCHu_dD8BJzteoLkY4xfwpOCB9y1pK6CFYXzjntbehwDlFs-jiY4DRwWkZi2-maLzz1sDZrzJ0McGfNsSSZMjzKEOR97haw7ubWx0n5YO1yYfV3c2v13Blg4W5SP2tVqAMZluxxpdaOAZPnByzPXk4j8CX9xefzz82V58-XJ6_u2o0o7Q0nebEMTUwpgfd91zVzXGmMRuk7bQzGilpNdHY9V2vGDYEKa4Hogx2Srn2CLzd6s6LmqzR1WqSo5iTn2Raiyi9-Psl-K9iFX8IyklHaFcFXj4IpPh9sbmIyWdtx-rfxiULPCDUo7ZvaUVf_INexyWFam9DDZi3nOFKnW4pnWKu8bndMBiJTaZil2lln-9PvyP_JFiBV1sgz5uPt2mv5X9qvwFhZbC8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808193951</pqid></control><display><type>article</type><title>Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing</title><source>Open Access: PubMed Central</source><source>Full-Text Journals in Chemistry (Open access)</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Fischer, Konrad ; Kraner-Scheiber, Simone ; Petersen, Björn ; Rieblinger, Beate ; Buermann, Anna ; Flisikowska, Tatiana ; Flisikowski, Krzysztof ; Christan, Susanne ; Edlinger, Marlene ; Baars, Wiebke ; Kurome, Mayuko ; Zakhartchenko, Valeri ; Kessler, Barbara ; Plotzki, Elena ; Szczerbal, Izabela ; Switonski, Marek ; Denner, Joachim ; Wolf, Eckhard ; Schwinzer, Reinhard ; Niemann, Heiner ; Kind, Alexander ; Schnieke, Angelika</creator><creatorcontrib>Fischer, Konrad ; Kraner-Scheiber, Simone ; Petersen, Björn ; Rieblinger, Beate ; Buermann, Anna ; Flisikowska, Tatiana ; Flisikowski, Krzysztof ; Christan, Susanne ; Edlinger, Marlene ; Baars, Wiebke ; Kurome, Mayuko ; Zakhartchenko, Valeri ; Kessler, Barbara ; Plotzki, Elena ; Szczerbal, Izabela ; Switonski, Marek ; Denner, Joachim ; Wolf, Eckhard ; Schwinzer, Reinhard ; Niemann, Heiner ; Kind, Alexander ; Schnieke, Angelika</creatorcontrib><description>Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - ‘gene stacking’ and cointegration of multiple engineered large vectors - ‘combineering’, to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous
GGTA1
and
CMAH
knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before
GGTA1
knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep29081</identifier><identifier>PMID: 27353424</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/31 ; 42 ; 42/41 ; 45 ; 45/44 ; 631/61/17/1511 ; 631/61/17/1998 ; 631/61/490 ; 692/308/2778 ; 692/4017 ; Animal breeding ; Breeding of animals ; Cloning ; Endothelium ; Gene loci ; Genetic engineering ; Hogs ; Humanities and Social Sciences ; Life sciences ; Livestock ; multidisciplinary ; Science ; Swine</subject><ispartof>Scientific reports, 2016-06, Vol.6 (1), p.29081-29081, Article 29081</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-6c92f5b855c8c779bc77f95c158ae6cfdc0baec2c1f767b51d20b9c82bd1fbbf3</citedby><cites>FETCH-LOGICAL-c544t-6c92f5b855c8c779bc77f95c158ae6cfdc0baec2c1f767b51d20b9c82bd1fbbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1808193951/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1808193951?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27353424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischer, Konrad</creatorcontrib><creatorcontrib>Kraner-Scheiber, Simone</creatorcontrib><creatorcontrib>Petersen, Björn</creatorcontrib><creatorcontrib>Rieblinger, Beate</creatorcontrib><creatorcontrib>Buermann, Anna</creatorcontrib><creatorcontrib>Flisikowska, Tatiana</creatorcontrib><creatorcontrib>Flisikowski, Krzysztof</creatorcontrib><creatorcontrib>Christan, Susanne</creatorcontrib><creatorcontrib>Edlinger, Marlene</creatorcontrib><creatorcontrib>Baars, Wiebke</creatorcontrib><creatorcontrib>Kurome, Mayuko</creatorcontrib><creatorcontrib>Zakhartchenko, Valeri</creatorcontrib><creatorcontrib>Kessler, Barbara</creatorcontrib><creatorcontrib>Plotzki, Elena</creatorcontrib><creatorcontrib>Szczerbal, Izabela</creatorcontrib><creatorcontrib>Switonski, Marek</creatorcontrib><creatorcontrib>Denner, Joachim</creatorcontrib><creatorcontrib>Wolf, Eckhard</creatorcontrib><creatorcontrib>Schwinzer, Reinhard</creatorcontrib><creatorcontrib>Niemann, Heiner</creatorcontrib><creatorcontrib>Kind, Alexander</creatorcontrib><creatorcontrib>Schnieke, Angelika</creatorcontrib><title>Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - ‘gene stacking’ and cointegration of multiple engineered large vectors - ‘combineering’, to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous
GGTA1
and
CMAH
knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before
GGTA1
knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age.</description><subject>13/106</subject><subject>13/31</subject><subject>42</subject><subject>42/41</subject><subject>45</subject><subject>45/44</subject><subject>631/61/17/1511</subject><subject>631/61/17/1998</subject><subject>631/61/490</subject><subject>692/308/2778</subject><subject>692/4017</subject><subject>Animal breeding</subject><subject>Breeding of animals</subject><subject>Cloning</subject><subject>Endothelium</subject><subject>Gene loci</subject><subject>Genetic engineering</subject><subject>Hogs</subject><subject>Humanities and Social Sciences</subject><subject>Life sciences</subject><subject>Livestock</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Swine</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkc9uFSEUxonR2KbtwhcwJG6scSowMDNsTExTtUkTN7om_L1SZ2AExnh3fYz6en0Sub315qosgBx--c75-AB4htEZRu3wJic7E44G_AgcEkRZQ1pCHu_dD8BJzteoLkY4xfwpOCB9y1pK6CFYXzjntbehwDlFs-jiY4DRwWkZi2-maLzz1sDZrzJ0McGfNsSSZMjzKEOR97haw7ubWx0n5YO1yYfV3c2v13Blg4W5SP2tVqAMZluxxpdaOAZPnByzPXk4j8CX9xefzz82V58-XJ6_u2o0o7Q0nebEMTUwpgfd91zVzXGmMRuk7bQzGilpNdHY9V2vGDYEKa4Hogx2Srn2CLzd6s6LmqzR1WqSo5iTn2Raiyi9-Psl-K9iFX8IyklHaFcFXj4IpPh9sbmIyWdtx-rfxiULPCDUo7ZvaUVf_INexyWFam9DDZi3nOFKnW4pnWKu8bndMBiJTaZil2lln-9PvyP_JFiBV1sgz5uPt2mv5X9qvwFhZbC8</recordid><startdate>20160629</startdate><enddate>20160629</enddate><creator>Fischer, Konrad</creator><creator>Kraner-Scheiber, Simone</creator><creator>Petersen, Björn</creator><creator>Rieblinger, Beate</creator><creator>Buermann, Anna</creator><creator>Flisikowska, Tatiana</creator><creator>Flisikowski, Krzysztof</creator><creator>Christan, Susanne</creator><creator>Edlinger, Marlene</creator><creator>Baars, Wiebke</creator><creator>Kurome, Mayuko</creator><creator>Zakhartchenko, Valeri</creator><creator>Kessler, Barbara</creator><creator>Plotzki, Elena</creator><creator>Szczerbal, Izabela</creator><creator>Switonski, Marek</creator><creator>Denner, Joachim</creator><creator>Wolf, Eckhard</creator><creator>Schwinzer, Reinhard</creator><creator>Niemann, Heiner</creator><creator>Kind, Alexander</creator><creator>Schnieke, Angelika</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160629</creationdate><title>Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing</title><author>Fischer, Konrad ; Kraner-Scheiber, Simone ; Petersen, Björn ; Rieblinger, Beate ; Buermann, Anna ; Flisikowska, Tatiana ; Flisikowski, Krzysztof ; Christan, Susanne ; Edlinger, Marlene ; Baars, Wiebke ; Kurome, Mayuko ; Zakhartchenko, Valeri ; Kessler, Barbara ; Plotzki, Elena ; Szczerbal, Izabela ; Switonski, Marek ; Denner, Joachim ; Wolf, Eckhard ; Schwinzer, Reinhard ; Niemann, Heiner ; Kind, Alexander ; Schnieke, Angelika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-6c92f5b855c8c779bc77f95c158ae6cfdc0baec2c1f767b51d20b9c82bd1fbbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/106</topic><topic>13/31</topic><topic>42</topic><topic>42/41</topic><topic>45</topic><topic>45/44</topic><topic>631/61/17/1511</topic><topic>631/61/17/1998</topic><topic>631/61/490</topic><topic>692/308/2778</topic><topic>692/4017</topic><topic>Animal breeding</topic><topic>Breeding of animals</topic><topic>Cloning</topic><topic>Endothelium</topic><topic>Gene loci</topic><topic>Genetic engineering</topic><topic>Hogs</topic><topic>Humanities and Social Sciences</topic><topic>Life sciences</topic><topic>Livestock</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Konrad</creatorcontrib><creatorcontrib>Kraner-Scheiber, Simone</creatorcontrib><creatorcontrib>Petersen, Björn</creatorcontrib><creatorcontrib>Rieblinger, Beate</creatorcontrib><creatorcontrib>Buermann, Anna</creatorcontrib><creatorcontrib>Flisikowska, Tatiana</creatorcontrib><creatorcontrib>Flisikowski, Krzysztof</creatorcontrib><creatorcontrib>Christan, Susanne</creatorcontrib><creatorcontrib>Edlinger, Marlene</creatorcontrib><creatorcontrib>Baars, Wiebke</creatorcontrib><creatorcontrib>Kurome, Mayuko</creatorcontrib><creatorcontrib>Zakhartchenko, Valeri</creatorcontrib><creatorcontrib>Kessler, Barbara</creatorcontrib><creatorcontrib>Plotzki, Elena</creatorcontrib><creatorcontrib>Szczerbal, Izabela</creatorcontrib><creatorcontrib>Switonski, Marek</creatorcontrib><creatorcontrib>Denner, Joachim</creatorcontrib><creatorcontrib>Wolf, Eckhard</creatorcontrib><creatorcontrib>Schwinzer, Reinhard</creatorcontrib><creatorcontrib>Niemann, Heiner</creatorcontrib><creatorcontrib>Kind, Alexander</creatorcontrib><creatorcontrib>Schnieke, Angelika</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Konrad</au><au>Kraner-Scheiber, Simone</au><au>Petersen, Björn</au><au>Rieblinger, Beate</au><au>Buermann, Anna</au><au>Flisikowska, Tatiana</au><au>Flisikowski, Krzysztof</au><au>Christan, Susanne</au><au>Edlinger, Marlene</au><au>Baars, Wiebke</au><au>Kurome, Mayuko</au><au>Zakhartchenko, Valeri</au><au>Kessler, Barbara</au><au>Plotzki, Elena</au><au>Szczerbal, Izabela</au><au>Switonski, Marek</au><au>Denner, Joachim</au><au>Wolf, Eckhard</au><au>Schwinzer, Reinhard</au><au>Niemann, Heiner</au><au>Kind, Alexander</au><au>Schnieke, Angelika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-06-29</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>29081</spage><epage>29081</epage><pages>29081-29081</pages><artnum>29081</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - ‘gene stacking’ and cointegration of multiple engineered large vectors - ‘combineering’, to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous
GGTA1
and
CMAH
knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before
GGTA1
knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27353424</pmid><doi>10.1038/srep29081</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-06, Vol.6 (1), p.29081-29081, Article 29081 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4926246 |
source | Open Access: PubMed Central; Full-Text Journals in Chemistry (Open access); ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/106 13/31 42 42/41 45 45/44 631/61/17/1511 631/61/17/1998 631/61/490 692/308/2778 692/4017 Animal breeding Breeding of animals Cloning Endothelium Gene loci Genetic engineering Hogs Humanities and Social Sciences Life sciences Livestock multidisciplinary Science Swine |
title | Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20production%20of%20multi-modified%20pigs%20for%20xenotransplantation%20by%20%E2%80%98combineering%E2%80%99,%20gene%20stacking%20and%20gene%20editing&rft.jtitle=Scientific%20reports&rft.au=Fischer,%20Konrad&rft.date=2016-06-29&rft.volume=6&rft.issue=1&rft.spage=29081&rft.epage=29081&rft.pages=29081-29081&rft.artnum=29081&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep29081&rft_dat=%3Cproquest_pubme%3E1800703734%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c544t-6c92f5b855c8c779bc77f95c158ae6cfdc0baec2c1f767b51d20b9c82bd1fbbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1808193951&rft_id=info:pmid/27353424&rfr_iscdi=true |