Loading…

Isolation of CD146+ Resident Lung Mesenchymal Stromal Cells from Rat Lungs

Mesenchymal stromal cells (MSCs) are increasingly recognized for their therapeutic potential in a wide range of diseases, including lung diseases. Besides the use of bone marrow and umbilical cord MSCs for exogenous cell therapy, there is also increasing interest in the repair and regenerative poten...

Full description

Saved in:
Bibliographic Details
Published in:Journal of visualized experiments 2016-06 (112)
Main Authors: Collins, Jennifer J P, Möbius, Marius A, Thébaud, Bernard
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-5c96d9f853f4811e924cfd3a10f30bbc56c5881a6cae9248af80361a6994c213
cites
container_end_page
container_issue 112
container_start_page
container_title Journal of visualized experiments
container_volume
creator Collins, Jennifer J P
Möbius, Marius A
Thébaud, Bernard
description Mesenchymal stromal cells (MSCs) are increasingly recognized for their therapeutic potential in a wide range of diseases, including lung diseases. Besides the use of bone marrow and umbilical cord MSCs for exogenous cell therapy, there is also increasing interest in the repair and regenerative potential of resident tissue MSCs. Moreover, they likely have a role in normal organ development, and have been attributed roles in disease, particularly those with a fibrotic nature. The main hurdle for the study of these resident tissue MSCs is the lack of a clear marker for the isolation and identification of these cells. The isolation technique described here applies multiple characteristics of lung resident MSCs (L-MSCs). Upon sacrifice of the rats, lungs are removed and rinsed multiple times to remove blood. Following mechanical dissociation by scalpel, the lungs are digested for 2-3 hr using a mix of collagenase type I, neutral protease and DNase type I. The obtained single cell suspension is subsequently washed and layered over density gradient medium (density 1.073 g/ml). After centrifugation, cells from the interphase are washed and plated in culture-treated flasks. Cells are cultured for 4-7 days in physiological 5% O2, 5% CO2 conditions. To deplete fibroblasts (CD146(-)) and to ensure a population of only L-MSCs (CD146(+)), positive selection for CD146(+) cells is performed through magnetic bead selection. In summary, this procedure reliably produces a population of primary L-MSCs for further in vitro study and manipulation. Because of the nature of the protocol, it can easily be translated to other experimental animal models.
doi_str_mv 10.3791/53782
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4927798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800129622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-5c96d9f853f4811e924cfd3a10f30bbc56c5881a6cae9248af80361a6994c213</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobs79BcmNIEg1H22a3AjS-TGZCHMX3oUsTbZK28ykFfbv7dwc8-qcw3l4z3teAIYY3dBU4NuEppwcgT4WMYoQTz-OD_oeOAvhEyFGUMJPQY-kNEZc4D54GQdXqqZwNXQWZiMcs2s4NaHITd3ASVsv4KsJptbLdaVK-N54t6mZKcsAbTfAqdpy4RycWFUGM9zVAZg9Psyy52jy9jTO7ieRppw0UaIFy4XlCbUxx9gIEmubU4WRpWg-1wnTCedYMa02O64sR5R1sxCxJpgOwN1WdtXOK5PrzqdXpVz5olJ-LZ0q5P9NXSzlwn3LWJA0FbwTuNoJePfVmtDIqgi6e0jVxrVBYo4QJoIR0qGXW1R7F4I3dn8GI7mJXf7G3nEXh5721F_O9Ae10Xuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800129622</pqid></control><display><type>article</type><title>Isolation of CD146+ Resident Lung Mesenchymal Stromal Cells from Rat Lungs</title><source>Open Access: PubMed Central</source><creator>Collins, Jennifer J P ; Möbius, Marius A ; Thébaud, Bernard</creator><creatorcontrib>Collins, Jennifer J P ; Möbius, Marius A ; Thébaud, Bernard</creatorcontrib><description>Mesenchymal stromal cells (MSCs) are increasingly recognized for their therapeutic potential in a wide range of diseases, including lung diseases. Besides the use of bone marrow and umbilical cord MSCs for exogenous cell therapy, there is also increasing interest in the repair and regenerative potential of resident tissue MSCs. Moreover, they likely have a role in normal organ development, and have been attributed roles in disease, particularly those with a fibrotic nature. The main hurdle for the study of these resident tissue MSCs is the lack of a clear marker for the isolation and identification of these cells. The isolation technique described here applies multiple characteristics of lung resident MSCs (L-MSCs). Upon sacrifice of the rats, lungs are removed and rinsed multiple times to remove blood. Following mechanical dissociation by scalpel, the lungs are digested for 2-3 hr using a mix of collagenase type I, neutral protease and DNase type I. The obtained single cell suspension is subsequently washed and layered over density gradient medium (density 1.073 g/ml). After centrifugation, cells from the interphase are washed and plated in culture-treated flasks. Cells are cultured for 4-7 days in physiological 5% O2, 5% CO2 conditions. To deplete fibroblasts (CD146(-)) and to ensure a population of only L-MSCs (CD146(+)), positive selection for CD146(+) cells is performed through magnetic bead selection. In summary, this procedure reliably produces a population of primary L-MSCs for further in vitro study and manipulation. Because of the nature of the protocol, it can easily be translated to other experimental animal models.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/53782</identifier><identifier>PMID: 27340891</identifier><language>eng</language><publisher>United States: MyJove Corporation</publisher><subject>Animals ; Biomarkers ; Cell Differentiation ; Cell- and Tissue-Based Therapy ; Lung ; Mesenchymal Stromal Cells ; Rats ; Stem Cell Biology</subject><ispartof>Journal of visualized experiments, 2016-06 (112)</ispartof><rights>Copyright © 2016, Journal of Visualized Experiments 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-5c96d9f853f4811e924cfd3a10f30bbc56c5881a6cae9248af80361a6994c213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927798/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927798/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27340891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collins, Jennifer J P</creatorcontrib><creatorcontrib>Möbius, Marius A</creatorcontrib><creatorcontrib>Thébaud, Bernard</creatorcontrib><title>Isolation of CD146+ Resident Lung Mesenchymal Stromal Cells from Rat Lungs</title><title>Journal of visualized experiments</title><addtitle>J Vis Exp</addtitle><description>Mesenchymal stromal cells (MSCs) are increasingly recognized for their therapeutic potential in a wide range of diseases, including lung diseases. Besides the use of bone marrow and umbilical cord MSCs for exogenous cell therapy, there is also increasing interest in the repair and regenerative potential of resident tissue MSCs. Moreover, they likely have a role in normal organ development, and have been attributed roles in disease, particularly those with a fibrotic nature. The main hurdle for the study of these resident tissue MSCs is the lack of a clear marker for the isolation and identification of these cells. The isolation technique described here applies multiple characteristics of lung resident MSCs (L-MSCs). Upon sacrifice of the rats, lungs are removed and rinsed multiple times to remove blood. Following mechanical dissociation by scalpel, the lungs are digested for 2-3 hr using a mix of collagenase type I, neutral protease and DNase type I. The obtained single cell suspension is subsequently washed and layered over density gradient medium (density 1.073 g/ml). After centrifugation, cells from the interphase are washed and plated in culture-treated flasks. Cells are cultured for 4-7 days in physiological 5% O2, 5% CO2 conditions. To deplete fibroblasts (CD146(-)) and to ensure a population of only L-MSCs (CD146(+)), positive selection for CD146(+) cells is performed through magnetic bead selection. In summary, this procedure reliably produces a population of primary L-MSCs for further in vitro study and manipulation. Because of the nature of the protocol, it can easily be translated to other experimental animal models.</description><subject>Animals</subject><subject>Biomarkers</subject><subject>Cell Differentiation</subject><subject>Cell- and Tissue-Based Therapy</subject><subject>Lung</subject><subject>Mesenchymal Stromal Cells</subject><subject>Rats</subject><subject>Stem Cell Biology</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkF1LwzAUhoMobs79BcmNIEg1H22a3AjS-TGZCHMX3oUsTbZK28ykFfbv7dwc8-qcw3l4z3teAIYY3dBU4NuEppwcgT4WMYoQTz-OD_oeOAvhEyFGUMJPQY-kNEZc4D54GQdXqqZwNXQWZiMcs2s4NaHITd3ASVsv4KsJptbLdaVK-N54t6mZKcsAbTfAqdpy4RycWFUGM9zVAZg9Psyy52jy9jTO7ieRppw0UaIFy4XlCbUxx9gIEmubU4WRpWg-1wnTCedYMa02O64sR5R1sxCxJpgOwN1WdtXOK5PrzqdXpVz5olJ-LZ0q5P9NXSzlwn3LWJA0FbwTuNoJePfVmtDIqgi6e0jVxrVBYo4QJoIR0qGXW1R7F4I3dn8GI7mJXf7G3nEXh5721F_O9Ae10Xuw</recordid><startdate>20160617</startdate><enddate>20160617</enddate><creator>Collins, Jennifer J P</creator><creator>Möbius, Marius A</creator><creator>Thébaud, Bernard</creator><general>MyJove Corporation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160617</creationdate><title>Isolation of CD146+ Resident Lung Mesenchymal Stromal Cells from Rat Lungs</title><author>Collins, Jennifer J P ; Möbius, Marius A ; Thébaud, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-5c96d9f853f4811e924cfd3a10f30bbc56c5881a6cae9248af80361a6994c213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomarkers</topic><topic>Cell Differentiation</topic><topic>Cell- and Tissue-Based Therapy</topic><topic>Lung</topic><topic>Mesenchymal Stromal Cells</topic><topic>Rats</topic><topic>Stem Cell Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Jennifer J P</creatorcontrib><creatorcontrib>Möbius, Marius A</creatorcontrib><creatorcontrib>Thébaud, Bernard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of visualized experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Jennifer J P</au><au>Möbius, Marius A</au><au>Thébaud, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolation of CD146+ Resident Lung Mesenchymal Stromal Cells from Rat Lungs</atitle><jtitle>Journal of visualized experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2016-06-17</date><risdate>2016</risdate><issue>112</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Mesenchymal stromal cells (MSCs) are increasingly recognized for their therapeutic potential in a wide range of diseases, including lung diseases. Besides the use of bone marrow and umbilical cord MSCs for exogenous cell therapy, there is also increasing interest in the repair and regenerative potential of resident tissue MSCs. Moreover, they likely have a role in normal organ development, and have been attributed roles in disease, particularly those with a fibrotic nature. The main hurdle for the study of these resident tissue MSCs is the lack of a clear marker for the isolation and identification of these cells. The isolation technique described here applies multiple characteristics of lung resident MSCs (L-MSCs). Upon sacrifice of the rats, lungs are removed and rinsed multiple times to remove blood. Following mechanical dissociation by scalpel, the lungs are digested for 2-3 hr using a mix of collagenase type I, neutral protease and DNase type I. The obtained single cell suspension is subsequently washed and layered over density gradient medium (density 1.073 g/ml). After centrifugation, cells from the interphase are washed and plated in culture-treated flasks. Cells are cultured for 4-7 days in physiological 5% O2, 5% CO2 conditions. To deplete fibroblasts (CD146(-)) and to ensure a population of only L-MSCs (CD146(+)), positive selection for CD146(+) cells is performed through magnetic bead selection. In summary, this procedure reliably produces a population of primary L-MSCs for further in vitro study and manipulation. Because of the nature of the protocol, it can easily be translated to other experimental animal models.</abstract><cop>United States</cop><pub>MyJove Corporation</pub><pmid>27340891</pmid><doi>10.3791/53782</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1940-087X
ispartof Journal of visualized experiments, 2016-06 (112)
issn 1940-087X
1940-087X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4927798
source Open Access: PubMed Central
subjects Animals
Biomarkers
Cell Differentiation
Cell- and Tissue-Based Therapy
Lung
Mesenchymal Stromal Cells
Rats
Stem Cell Biology
title Isolation of CD146+ Resident Lung Mesenchymal Stromal Cells from Rat Lungs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolation%20of%20CD146+%20Resident%20Lung%20Mesenchymal%20Stromal%20Cells%20from%20Rat%20Lungs&rft.jtitle=Journal%20of%20visualized%20experiments&rft.au=Collins,%20Jennifer%20J%20P&rft.date=2016-06-17&rft.issue=112&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/53782&rft_dat=%3Cproquest_pubme%3E1800129622%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-5c96d9f853f4811e924cfd3a10f30bbc56c5881a6cae9248af80361a6994c213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800129622&rft_id=info:pmid/27340891&rfr_iscdi=true