Loading…
Local mesh quantized extrema patterns for image retrieval
In this paper, we propose a new feature descriptor, named local mesh quantized extrema patterns (LMeQEP) for image indexing and retrieval. The standard local quantized patterns collect the spatial relationship in the form of larger or deeper texture pattern based on the relative variations in the gr...
Saved in:
Published in: | SpringerPlus 2016-07, Vol.5 (1), p.976-976, Article 976 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-53d3b0c2659238430b0e9ae60779e20c09ecc7674dca6a920a4883d0106854883 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-53d3b0c2659238430b0e9ae60779e20c09ecc7674dca6a920a4883d0106854883 |
container_end_page | 976 |
container_issue | 1 |
container_start_page | 976 |
container_title | SpringerPlus |
container_volume | 5 |
creator | Koteswara Rao, L. Venkata Rao, D. Reddy, L. Pratap |
description | In this paper, we propose a new feature descriptor, named local mesh quantized extrema patterns (LMeQEP) for image indexing and retrieval. The standard local quantized patterns collect the spatial relationship in the form of larger or deeper texture pattern based on the relative variations in the gray values of center pixel and its neighbors. Directional local extrema patterns explore the directional information in 0°, 90°, 45° and 135° for a pixel positioned at the center. A mesh structure is created from a quantized extrema to derive significant textural information. Initially, the directional quantized data from the mesh structure is extracted to form LMeQEP of given image. Then, RGB color histogram is built and integrated with the LMeQEP to enhance the performance of the system. In order to test the impact of proposed method, experimentation is done with bench mark image repositories such as MIT VisTex and Corel-1k. Avg. retrieval rate and avg. retrieval precision are considered as the evaluation metrics to record the performance level. The results from experiments show a considerable improvement when compared to other recent techniques in the image retrieval. |
doi_str_mv | 10.1186/s40064-016-2664-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4932021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4272920261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-53d3b0c2659238430b0e9ae60779e20c09ecc7674dca6a920a4883d0106854883</originalsourceid><addsrcrecordid>eNp1kUtLAzEQx4MoKtUP4EUWvHhZnTw2j4sg4gsKXvQc0uy03bKPmuyK-ulNqZYqmEsG5jf_efwJOaFwQamWl1EASJEDlTmTKTA75JBRw3Oqge5uxQfkOMYFpCcVFQr2yQFTghmt5SEx4867OmswzrPXwbV99Yllhu99wMZlS9f3GNqYTbuQVY2bYRawDxW-ufqI7E1dHfH4-x-Rl7vb55uHfPx0_3hzPc596tXnBS_5BDyThWFcCw4TQONQglIGGXgw6L2SSpTeSWcYOKE1L4GC1MUqHJGrte5ymDRYemz74Gq7DGme8GE7V9nfmbaa21n3ZoXhDBhNAuffAqF7HTD2tqmix7p2LXZDtOlGRRpAcZXQsz_oohtCm9ZLlJCm4LQoEkXXlA9djAGnm2Eo2JU3du2NTd7YlTfWpJrT7S02FT9OJICtgZhS7QzDVut_Vb8AhUCYSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846953155</pqid></control><display><type>article</type><title>Local mesh quantized extrema patterns for image retrieval</title><source>PubMed Central(OpenAccess)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Free Full-Text Journals in Chemistry</source><creator>Koteswara Rao, L. ; Venkata Rao, D. ; Reddy, L. Pratap</creator><creatorcontrib>Koteswara Rao, L. ; Venkata Rao, D. ; Reddy, L. Pratap</creatorcontrib><description>In this paper, we propose a new feature descriptor, named local mesh quantized extrema patterns (LMeQEP) for image indexing and retrieval. The standard local quantized patterns collect the spatial relationship in the form of larger or deeper texture pattern based on the relative variations in the gray values of center pixel and its neighbors. Directional local extrema patterns explore the directional information in 0°, 90°, 45° and 135° for a pixel positioned at the center. A mesh structure is created from a quantized extrema to derive significant textural information. Initially, the directional quantized data from the mesh structure is extracted to form LMeQEP of given image. Then, RGB color histogram is built and integrated with the LMeQEP to enhance the performance of the system. In order to test the impact of proposed method, experimentation is done with bench mark image repositories such as MIT VisTex and Corel-1k. Avg. retrieval rate and avg. retrieval precision are considered as the evaluation metrics to record the performance level. The results from experiments show a considerable improvement when compared to other recent techniques in the image retrieval.</description><identifier>ISSN: 2193-1801</identifier><identifier>EISSN: 2193-1801</identifier><identifier>DOI: 10.1186/s40064-016-2664-9</identifier><identifier>PMID: 27429886</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computer Science ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>SpringerPlus, 2016-07, Vol.5 (1), p.976-976, Article 976</ispartof><rights>The Author(s) 2016</rights><rights>SpringerPlus is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-53d3b0c2659238430b0e9ae60779e20c09ecc7674dca6a920a4883d0106854883</citedby><cites>FETCH-LOGICAL-c470t-53d3b0c2659238430b0e9ae60779e20c09ecc7674dca6a920a4883d0106854883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932021/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932021/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27429886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koteswara Rao, L.</creatorcontrib><creatorcontrib>Venkata Rao, D.</creatorcontrib><creatorcontrib>Reddy, L. Pratap</creatorcontrib><title>Local mesh quantized extrema patterns for image retrieval</title><title>SpringerPlus</title><addtitle>SpringerPlus</addtitle><addtitle>Springerplus</addtitle><description>In this paper, we propose a new feature descriptor, named local mesh quantized extrema patterns (LMeQEP) for image indexing and retrieval. The standard local quantized patterns collect the spatial relationship in the form of larger or deeper texture pattern based on the relative variations in the gray values of center pixel and its neighbors. Directional local extrema patterns explore the directional information in 0°, 90°, 45° and 135° for a pixel positioned at the center. A mesh structure is created from a quantized extrema to derive significant textural information. Initially, the directional quantized data from the mesh structure is extracted to form LMeQEP of given image. Then, RGB color histogram is built and integrated with the LMeQEP to enhance the performance of the system. In order to test the impact of proposed method, experimentation is done with bench mark image repositories such as MIT VisTex and Corel-1k. Avg. retrieval rate and avg. retrieval precision are considered as the evaluation metrics to record the performance level. The results from experiments show a considerable improvement when compared to other recent techniques in the image retrieval.</description><subject>Computer Science</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2193-1801</issn><issn>2193-1801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLAzEQx4MoKtUP4EUWvHhZnTw2j4sg4gsKXvQc0uy03bKPmuyK-ulNqZYqmEsG5jf_efwJOaFwQamWl1EASJEDlTmTKTA75JBRw3Oqge5uxQfkOMYFpCcVFQr2yQFTghmt5SEx4867OmswzrPXwbV99Yllhu99wMZlS9f3GNqYTbuQVY2bYRawDxW-ufqI7E1dHfH4-x-Rl7vb55uHfPx0_3hzPc596tXnBS_5BDyThWFcCw4TQONQglIGGXgw6L2SSpTeSWcYOKE1L4GC1MUqHJGrte5ymDRYemz74Gq7DGme8GE7V9nfmbaa21n3ZoXhDBhNAuffAqF7HTD2tqmix7p2LXZDtOlGRRpAcZXQsz_oohtCm9ZLlJCm4LQoEkXXlA9djAGnm2Eo2JU3du2NTd7YlTfWpJrT7S02FT9OJICtgZhS7QzDVut_Vb8AhUCYSQ</recordid><startdate>20160704</startdate><enddate>20160704</enddate><creator>Koteswara Rao, L.</creator><creator>Venkata Rao, D.</creator><creator>Reddy, L. Pratap</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160704</creationdate><title>Local mesh quantized extrema patterns for image retrieval</title><author>Koteswara Rao, L. ; Venkata Rao, D. ; Reddy, L. Pratap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-53d3b0c2659238430b0e9ae60779e20c09ecc7674dca6a920a4883d0106854883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Science</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koteswara Rao, L.</creatorcontrib><creatorcontrib>Venkata Rao, D.</creatorcontrib><creatorcontrib>Reddy, L. Pratap</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>SpringerPlus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koteswara Rao, L.</au><au>Venkata Rao, D.</au><au>Reddy, L. Pratap</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local mesh quantized extrema patterns for image retrieval</atitle><jtitle>SpringerPlus</jtitle><stitle>SpringerPlus</stitle><addtitle>Springerplus</addtitle><date>2016-07-04</date><risdate>2016</risdate><volume>5</volume><issue>1</issue><spage>976</spage><epage>976</epage><pages>976-976</pages><artnum>976</artnum><issn>2193-1801</issn><eissn>2193-1801</eissn><abstract>In this paper, we propose a new feature descriptor, named local mesh quantized extrema patterns (LMeQEP) for image indexing and retrieval. The standard local quantized patterns collect the spatial relationship in the form of larger or deeper texture pattern based on the relative variations in the gray values of center pixel and its neighbors. Directional local extrema patterns explore the directional information in 0°, 90°, 45° and 135° for a pixel positioned at the center. A mesh structure is created from a quantized extrema to derive significant textural information. Initially, the directional quantized data from the mesh structure is extracted to form LMeQEP of given image. Then, RGB color histogram is built and integrated with the LMeQEP to enhance the performance of the system. In order to test the impact of proposed method, experimentation is done with bench mark image repositories such as MIT VisTex and Corel-1k. Avg. retrieval rate and avg. retrieval precision are considered as the evaluation metrics to record the performance level. The results from experiments show a considerable improvement when compared to other recent techniques in the image retrieval.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>27429886</pmid><doi>10.1186/s40064-016-2664-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-1801 |
ispartof | SpringerPlus, 2016-07, Vol.5 (1), p.976-976, Article 976 |
issn | 2193-1801 2193-1801 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4932021 |
source | PubMed Central(OpenAccess); Springer Nature - SpringerLink Journals - Fully Open Access; Free Full-Text Journals in Chemistry |
subjects | Computer Science Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Local mesh quantized extrema patterns for image retrieval |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20mesh%20quantized%20extrema%20patterns%20for%20image%20retrieval&rft.jtitle=SpringerPlus&rft.au=Koteswara%20Rao,%20L.&rft.date=2016-07-04&rft.volume=5&rft.issue=1&rft.spage=976&rft.epage=976&rft.pages=976-976&rft.artnum=976&rft.issn=2193-1801&rft.eissn=2193-1801&rft_id=info:doi/10.1186/s40064-016-2664-9&rft_dat=%3Cproquest_pubme%3E4272920261%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-53d3b0c2659238430b0e9ae60779e20c09ecc7674dca6a920a4883d0106854883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1846953155&rft_id=info:pmid/27429886&rfr_iscdi=true |