Loading…

Defining chromosomal translocation risks in cancer

Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analy...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2016-06, Vol.113 (26), p.E3649-E3656
Main Authors: Hogenbirk, Marc A., Heideman, Marinus R., de Rink, Iris, Velds, Arno, Kerkhoven, Ron M., Wessels, Lodewyk F. A., Jacobs, Heinz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-b00d0e56f1263bf09eefbaba1dbd2004489ea911aae2a4b9ec1a2c816707641e3
cites cdi_FETCH-LOGICAL-c542t-b00d0e56f1263bf09eefbaba1dbd2004489ea911aae2a4b9ec1a2c816707641e3
container_end_page E3656
container_issue 26
container_start_page E3649
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Hogenbirk, Marc A.
Heideman, Marinus R.
de Rink, Iris
Velds, Arno
Kerkhoven, Ron M.
Wessels, Lodewyk F. A.
Jacobs, Heinz
description Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer.
doi_str_mv 10.1073/pnas.1602025113
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4932958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26470656</jstor_id><sourcerecordid>26470656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-b00d0e56f1263bf09eefbaba1dbd2004489ea911aae2a4b9ec1a2c816707641e3</originalsourceid><addsrcrecordid>eNqNkUFPGzEQha0KRNKUc0-tVuLSy8KM7fWuL0gotICExAXOltfxgsOundobJP49jkIJ5cRpDvPNm3nzCPmOcIxQs5OV1-kYBVCgFSL7QqYIEkvBJeyRKQCty4ZTPiFfU1oCgKwaOCATWjNgwPmU0HPbOe_8fWEeYhhCCoPuizFqn_pg9OiCL6JLj6lwvjDaGxu_kf1O98kevtYZufvz-3Z-WV7fXFzNz65LU3E6li3AAmwlOqSCtR1Ia7tWtxoX7YJCXt5IqyWi1pZq3kprUFPToKihFhwtm5HTre5q3Q52YazPZ_VqFd2g47MK2qn_O949qPvwpLhkNBvNAr9eBWL4u7ZpVINLxva99jask8IGsZEVCPgEClDnH3OW0aMP6DKso8-f2FBYyRqxytTJljIxpBRt93Y3gtpEpzbRqV10eeLne7tv_L-sMvBjCyzTGOKuL3gNohLsBcpUnkY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801597115</pqid></control><display><type>article</type><title>Defining chromosomal translocation risks in cancer</title><source>PMC (PubMed Central)</source><source>JSTOR Journals and Primary Sources</source><creator>Hogenbirk, Marc A. ; Heideman, Marinus R. ; de Rink, Iris ; Velds, Arno ; Kerkhoven, Ron M. ; Wessels, Lodewyk F. A. ; Jacobs, Heinz</creator><creatorcontrib>Hogenbirk, Marc A. ; Heideman, Marinus R. ; de Rink, Iris ; Velds, Arno ; Kerkhoven, Ron M. ; Wessels, Lodewyk F. A. ; Jacobs, Heinz</creatorcontrib><description>Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1602025113</identifier><identifier>PMID: 27303044</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cancer ; Chromatin ; Chromatin - genetics ; Chromosomes ; Genome ; Genomes ; Humans ; Mice ; Neoplasms - genetics ; Neoplasms - metabolism ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; PNAS Plus ; Promoter Regions, Genetic ; Risk factors ; Rodents ; Transcription, Genetic ; Transcriptional Elongation Factors - genetics ; Transcriptional Elongation Factors - metabolism ; Translocation, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-06, Vol.113 (26), p.E3649-E3656</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jun 28, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-b00d0e56f1263bf09eefbaba1dbd2004489ea911aae2a4b9ec1a2c816707641e3</citedby><cites>FETCH-LOGICAL-c542t-b00d0e56f1263bf09eefbaba1dbd2004489ea911aae2a4b9ec1a2c816707641e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26470656$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26470656$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27303044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hogenbirk, Marc A.</creatorcontrib><creatorcontrib>Heideman, Marinus R.</creatorcontrib><creatorcontrib>de Rink, Iris</creatorcontrib><creatorcontrib>Velds, Arno</creatorcontrib><creatorcontrib>Kerkhoven, Ron M.</creatorcontrib><creatorcontrib>Wessels, Lodewyk F. A.</creatorcontrib><creatorcontrib>Jacobs, Heinz</creatorcontrib><title>Defining chromosomal translocation risks in cancer</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromosomes</subject><subject>Genome</subject><subject>Genomes</subject><subject>Humans</subject><subject>Mice</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>PNAS Plus</subject><subject>Promoter Regions, Genetic</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Elongation Factors - genetics</subject><subject>Transcriptional Elongation Factors - metabolism</subject><subject>Translocation, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUFPGzEQha0KRNKUc0-tVuLSy8KM7fWuL0gotICExAXOltfxgsOundobJP49jkIJ5cRpDvPNm3nzCPmOcIxQs5OV1-kYBVCgFSL7QqYIEkvBJeyRKQCty4ZTPiFfU1oCgKwaOCATWjNgwPmU0HPbOe_8fWEeYhhCCoPuizFqn_pg9OiCL6JLj6lwvjDaGxu_kf1O98kevtYZufvz-3Z-WV7fXFzNz65LU3E6li3AAmwlOqSCtR1Ia7tWtxoX7YJCXt5IqyWi1pZq3kprUFPToKihFhwtm5HTre5q3Q52YazPZ_VqFd2g47MK2qn_O949qPvwpLhkNBvNAr9eBWL4u7ZpVINLxva99jask8IGsZEVCPgEClDnH3OW0aMP6DKso8-f2FBYyRqxytTJljIxpBRt93Y3gtpEpzbRqV10eeLne7tv_L-sMvBjCyzTGOKuL3gNohLsBcpUnkY</recordid><startdate>20160628</startdate><enddate>20160628</enddate><creator>Hogenbirk, Marc A.</creator><creator>Heideman, Marinus R.</creator><creator>de Rink, Iris</creator><creator>Velds, Arno</creator><creator>Kerkhoven, Ron M.</creator><creator>Wessels, Lodewyk F. A.</creator><creator>Jacobs, Heinz</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160628</creationdate><title>Defining chromosomal translocation risks in cancer</title><author>Hogenbirk, Marc A. ; Heideman, Marinus R. ; de Rink, Iris ; Velds, Arno ; Kerkhoven, Ron M. ; Wessels, Lodewyk F. A. ; Jacobs, Heinz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-b00d0e56f1263bf09eefbaba1dbd2004489ea911aae2a4b9ec1a2c816707641e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromosomes</topic><topic>Genome</topic><topic>Genomes</topic><topic>Humans</topic><topic>Mice</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>PNAS Plus</topic><topic>Promoter Regions, Genetic</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Elongation Factors - genetics</topic><topic>Transcriptional Elongation Factors - metabolism</topic><topic>Translocation, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hogenbirk, Marc A.</creatorcontrib><creatorcontrib>Heideman, Marinus R.</creatorcontrib><creatorcontrib>de Rink, Iris</creatorcontrib><creatorcontrib>Velds, Arno</creatorcontrib><creatorcontrib>Kerkhoven, Ron M.</creatorcontrib><creatorcontrib>Wessels, Lodewyk F. A.</creatorcontrib><creatorcontrib>Jacobs, Heinz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hogenbirk, Marc A.</au><au>Heideman, Marinus R.</au><au>de Rink, Iris</au><au>Velds, Arno</au><au>Kerkhoven, Ron M.</au><au>Wessels, Lodewyk F. A.</au><au>Jacobs, Heinz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining chromosomal translocation risks in cancer</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-06-28</date><risdate>2016</risdate><volume>113</volume><issue>26</issue><spage>E3649</spage><epage>E3656</epage><pages>E3649-E3656</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27303044</pmid><doi>10.1073/pnas.1602025113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-06, Vol.113 (26), p.E3649-E3656
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4932958
source PMC (PubMed Central); JSTOR Journals and Primary Sources
subjects Animals
Biological Sciences
Cancer
Chromatin
Chromatin - genetics
Chromosomes
Genome
Genomes
Humans
Mice
Neoplasms - genetics
Neoplasms - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
PNAS Plus
Promoter Regions, Genetic
Risk factors
Rodents
Transcription, Genetic
Transcriptional Elongation Factors - genetics
Transcriptional Elongation Factors - metabolism
Translocation, Genetic
title Defining chromosomal translocation risks in cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20chromosomal%20translocation%20risks%20in%20cancer&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hogenbirk,%20Marc%20A.&rft.date=2016-06-28&rft.volume=113&rft.issue=26&rft.spage=E3649&rft.epage=E3656&rft.pages=E3649-E3656&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1602025113&rft_dat=%3Cjstor_pubme%3E26470656%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-b00d0e56f1263bf09eefbaba1dbd2004489ea911aae2a4b9ec1a2c816707641e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1801597115&rft_id=info:pmid/27303044&rft_jstor_id=26470656&rfr_iscdi=true