Loading…

Suppressing disease spreading by using information diffusion on multiplex networks

Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between infor...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2016-07, Vol.6 (1), p.29259-29259, Article 29259
Main Authors: Wang, Wei, Liu, Quan-Hui, Cai, Shi-Min, Tang, Ming, Braunstein, Lidia A., Stanley, H. Eugene
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3
cites cdi_FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3
container_end_page 29259
container_issue 1
container_start_page 29259
container_title Scientific reports
container_volume 6
creator Wang, Wei
Liu, Quan-Hui
Cai, Shi-Min
Tang, Ming
Braunstein, Lidia A.
Stanley, H. Eugene
description Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.
doi_str_mv 10.1038/srep29259
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4150622231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3</originalsourceid><addsrcrecordid>eNplkVtLwzAUx4Mobsw9-AVk4IsK01zaNXkRZHiDgeDlOaRtMjPbpiatum_v2cUxNYTkcPLLPyfnj9AhwecEM34RvK6poLHYQV2Ko3hIGaW7W3EH9UOYYRgxFRER-6hDE8Yx56SLHp_auvY6BFtNB7kNWgU9CJBR-SKTzgft8shWxvlSNdZVgBkDWYhglm3R2LrQX4NKN5_Ov4UDtGdUEXR_vffQy8318_huOHm4vR9fTYZZjKNmyHWUxhEjKaPEmNiM8EirNBeKJhlVaUKinKck5UQlCpA44ToxyxUuUq5YD12udOs2LXWe6arxqpC1t6Xyc-mUlb9PKvsqp-5DRoIxEY9A4GQt4N17q0MjSxsyXRSq0q4NknDMEgF9E4Ae_0FnrvUVfA8oQim0VXCgTldU5l0AX8ymGILlwiy5MQvYo-3qN-SPNQCcrQBwAxzQfuvJf2rfJsigCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812241998</pqid></control><display><type>article</type><title>Suppressing disease spreading by using information diffusion on multiplex networks</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Wei ; Liu, Quan-Hui ; Cai, Shi-Min ; Tang, Ming ; Braunstein, Lidia A. ; Stanley, H. Eugene</creator><creatorcontrib>Wang, Wei ; Liu, Quan-Hui ; Cai, Shi-Min ; Tang, Ming ; Braunstein, Lidia A. ; Stanley, H. Eugene</creatorcontrib><description>Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep29259</identifier><identifier>PMID: 27380881</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 639/766/530/2801 ; Disease Outbreaks ; Disease prevention ; Disease Transmission, Infectious - prevention &amp; control ; Epidemics ; Humanities and Social Sciences ; Humans ; Influenza, Human - epidemiology ; Influenza, Human - transmission ; Information Dissemination ; Investigations ; Models, Theoretical ; multidisciplinary ; Outbreaks ; Science ; Search engines ; Time series ; Trends</subject><ispartof>Scientific reports, 2016-07, Vol.6 (1), p.29259-29259, Article 29259</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jul 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3</citedby><cites>FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1812241998/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1812241998?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27380881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Quan-Hui</creatorcontrib><creatorcontrib>Cai, Shi-Min</creatorcontrib><creatorcontrib>Tang, Ming</creatorcontrib><creatorcontrib>Braunstein, Lidia A.</creatorcontrib><creatorcontrib>Stanley, H. Eugene</creatorcontrib><title>Suppressing disease spreading by using information diffusion on multiplex networks</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.</description><subject>639/705/1041</subject><subject>639/766/530/2801</subject><subject>Disease Outbreaks</subject><subject>Disease prevention</subject><subject>Disease Transmission, Infectious - prevention &amp; control</subject><subject>Epidemics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - transmission</subject><subject>Information Dissemination</subject><subject>Investigations</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Outbreaks</subject><subject>Science</subject><subject>Search engines</subject><subject>Time series</subject><subject>Trends</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkVtLwzAUx4Mobsw9-AVk4IsK01zaNXkRZHiDgeDlOaRtMjPbpiatum_v2cUxNYTkcPLLPyfnj9AhwecEM34RvK6poLHYQV2Ko3hIGaW7W3EH9UOYYRgxFRER-6hDE8Yx56SLHp_auvY6BFtNB7kNWgU9CJBR-SKTzgft8shWxvlSNdZVgBkDWYhglm3R2LrQX4NKN5_Ov4UDtGdUEXR_vffQy8318_huOHm4vR9fTYZZjKNmyHWUxhEjKaPEmNiM8EirNBeKJhlVaUKinKck5UQlCpA44ToxyxUuUq5YD12udOs2LXWe6arxqpC1t6Xyc-mUlb9PKvsqp-5DRoIxEY9A4GQt4N17q0MjSxsyXRSq0q4NknDMEgF9E4Ae_0FnrvUVfA8oQim0VXCgTldU5l0AX8ymGILlwiy5MQvYo-3qN-SPNQCcrQBwAxzQfuvJf2rfJsigCA</recordid><startdate>20160706</startdate><enddate>20160706</enddate><creator>Wang, Wei</creator><creator>Liu, Quan-Hui</creator><creator>Cai, Shi-Min</creator><creator>Tang, Ming</creator><creator>Braunstein, Lidia A.</creator><creator>Stanley, H. Eugene</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160706</creationdate><title>Suppressing disease spreading by using information diffusion on multiplex networks</title><author>Wang, Wei ; Liu, Quan-Hui ; Cai, Shi-Min ; Tang, Ming ; Braunstein, Lidia A. ; Stanley, H. Eugene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/705/1041</topic><topic>639/766/530/2801</topic><topic>Disease Outbreaks</topic><topic>Disease prevention</topic><topic>Disease Transmission, Infectious - prevention &amp; control</topic><topic>Epidemics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - transmission</topic><topic>Information Dissemination</topic><topic>Investigations</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Outbreaks</topic><topic>Science</topic><topic>Search engines</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Quan-Hui</creatorcontrib><creatorcontrib>Cai, Shi-Min</creatorcontrib><creatorcontrib>Tang, Ming</creatorcontrib><creatorcontrib>Braunstein, Lidia A.</creatorcontrib><creatorcontrib>Stanley, H. Eugene</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Liu, Quan-Hui</au><au>Cai, Shi-Min</au><au>Tang, Ming</au><au>Braunstein, Lidia A.</au><au>Stanley, H. Eugene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressing disease spreading by using information diffusion on multiplex networks</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-07-06</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>29259</spage><epage>29259</epage><pages>29259-29259</pages><artnum>29259</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27380881</pmid><doi>10.1038/srep29259</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-07, Vol.6 (1), p.29259-29259, Article 29259
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933956
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/705/1041
639/766/530/2801
Disease Outbreaks
Disease prevention
Disease Transmission, Infectious - prevention & control
Epidemics
Humanities and Social Sciences
Humans
Influenza, Human - epidemiology
Influenza, Human - transmission
Information Dissemination
Investigations
Models, Theoretical
multidisciplinary
Outbreaks
Science
Search engines
Time series
Trends
title Suppressing disease spreading by using information diffusion on multiplex networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressing%20disease%20spreading%20by%20using%20information%20diffusion%20on%20multiplex%20networks&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Wei&rft.date=2016-07-06&rft.volume=6&rft.issue=1&rft.spage=29259&rft.epage=29259&rft.pages=29259-29259&rft.artnum=29259&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep29259&rft_dat=%3Cproquest_pubme%3E4150622231%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812241998&rft_id=info:pmid/27380881&rfr_iscdi=true