Loading…
Suppressing disease spreading by using information diffusion on multiplex networks
Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between infor...
Saved in:
Published in: | Scientific reports 2016-07, Vol.6 (1), p.29259-29259, Article 29259 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3 |
container_end_page | 29259 |
container_issue | 1 |
container_start_page | 29259 |
container_title | Scientific reports |
container_volume | 6 |
creator | Wang, Wei Liu, Quan-Hui Cai, Shi-Min Tang, Ming Braunstein, Lidia A. Stanley, H. Eugene |
description | Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate. |
doi_str_mv | 10.1038/srep29259 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4150622231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3</originalsourceid><addsrcrecordid>eNplkVtLwzAUx4Mobsw9-AVk4IsK01zaNXkRZHiDgeDlOaRtMjPbpiatum_v2cUxNYTkcPLLPyfnj9AhwecEM34RvK6poLHYQV2Ko3hIGaW7W3EH9UOYYRgxFRER-6hDE8Yx56SLHp_auvY6BFtNB7kNWgU9CJBR-SKTzgft8shWxvlSNdZVgBkDWYhglm3R2LrQX4NKN5_Ov4UDtGdUEXR_vffQy8318_huOHm4vR9fTYZZjKNmyHWUxhEjKaPEmNiM8EirNBeKJhlVaUKinKck5UQlCpA44ToxyxUuUq5YD12udOs2LXWe6arxqpC1t6Xyc-mUlb9PKvsqp-5DRoIxEY9A4GQt4N17q0MjSxsyXRSq0q4NknDMEgF9E4Ae_0FnrvUVfA8oQim0VXCgTldU5l0AX8ymGILlwiy5MQvYo-3qN-SPNQCcrQBwAxzQfuvJf2rfJsigCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812241998</pqid></control><display><type>article</type><title>Suppressing disease spreading by using information diffusion on multiplex networks</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Wei ; Liu, Quan-Hui ; Cai, Shi-Min ; Tang, Ming ; Braunstein, Lidia A. ; Stanley, H. Eugene</creator><creatorcontrib>Wang, Wei ; Liu, Quan-Hui ; Cai, Shi-Min ; Tang, Ming ; Braunstein, Lidia A. ; Stanley, H. Eugene</creatorcontrib><description>Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep29259</identifier><identifier>PMID: 27380881</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 639/766/530/2801 ; Disease Outbreaks ; Disease prevention ; Disease Transmission, Infectious - prevention & control ; Epidemics ; Humanities and Social Sciences ; Humans ; Influenza, Human - epidemiology ; Influenza, Human - transmission ; Information Dissemination ; Investigations ; Models, Theoretical ; multidisciplinary ; Outbreaks ; Science ; Search engines ; Time series ; Trends</subject><ispartof>Scientific reports, 2016-07, Vol.6 (1), p.29259-29259, Article 29259</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jul 2016</rights><rights>Copyright © 2016, Macmillan Publishers Limited 2016 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3</citedby><cites>FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1812241998/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1812241998?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27380881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Quan-Hui</creatorcontrib><creatorcontrib>Cai, Shi-Min</creatorcontrib><creatorcontrib>Tang, Ming</creatorcontrib><creatorcontrib>Braunstein, Lidia A.</creatorcontrib><creatorcontrib>Stanley, H. Eugene</creatorcontrib><title>Suppressing disease spreading by using information diffusion on multiplex networks</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.</description><subject>639/705/1041</subject><subject>639/766/530/2801</subject><subject>Disease Outbreaks</subject><subject>Disease prevention</subject><subject>Disease Transmission, Infectious - prevention & control</subject><subject>Epidemics</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - transmission</subject><subject>Information Dissemination</subject><subject>Investigations</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Outbreaks</subject><subject>Science</subject><subject>Search engines</subject><subject>Time series</subject><subject>Trends</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkVtLwzAUx4Mobsw9-AVk4IsK01zaNXkRZHiDgeDlOaRtMjPbpiatum_v2cUxNYTkcPLLPyfnj9AhwecEM34RvK6poLHYQV2Ko3hIGaW7W3EH9UOYYRgxFRER-6hDE8Yx56SLHp_auvY6BFtNB7kNWgU9CJBR-SKTzgft8shWxvlSNdZVgBkDWYhglm3R2LrQX4NKN5_Ov4UDtGdUEXR_vffQy8318_huOHm4vR9fTYZZjKNmyHWUxhEjKaPEmNiM8EirNBeKJhlVaUKinKck5UQlCpA44ToxyxUuUq5YD12udOs2LXWe6arxqpC1t6Xyc-mUlb9PKvsqp-5DRoIxEY9A4GQt4N17q0MjSxsyXRSq0q4NknDMEgF9E4Ae_0FnrvUVfA8oQim0VXCgTldU5l0AX8ymGILlwiy5MQvYo-3qN-SPNQCcrQBwAxzQfuvJf2rfJsigCA</recordid><startdate>20160706</startdate><enddate>20160706</enddate><creator>Wang, Wei</creator><creator>Liu, Quan-Hui</creator><creator>Cai, Shi-Min</creator><creator>Tang, Ming</creator><creator>Braunstein, Lidia A.</creator><creator>Stanley, H. Eugene</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160706</creationdate><title>Suppressing disease spreading by using information diffusion on multiplex networks</title><author>Wang, Wei ; Liu, Quan-Hui ; Cai, Shi-Min ; Tang, Ming ; Braunstein, Lidia A. ; Stanley, H. Eugene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/705/1041</topic><topic>639/766/530/2801</topic><topic>Disease Outbreaks</topic><topic>Disease prevention</topic><topic>Disease Transmission, Infectious - prevention & control</topic><topic>Epidemics</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - transmission</topic><topic>Information Dissemination</topic><topic>Investigations</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Outbreaks</topic><topic>Science</topic><topic>Search engines</topic><topic>Time series</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Quan-Hui</creatorcontrib><creatorcontrib>Cai, Shi-Min</creatorcontrib><creatorcontrib>Tang, Ming</creatorcontrib><creatorcontrib>Braunstein, Lidia A.</creatorcontrib><creatorcontrib>Stanley, H. Eugene</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Liu, Quan-Hui</au><au>Cai, Shi-Min</au><au>Tang, Ming</au><au>Braunstein, Lidia A.</au><au>Stanley, H. Eugene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressing disease spreading by using information diffusion on multiplex networks</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-07-06</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>29259</spage><epage>29259</epage><pages>29259-29259</pages><artnum>29259</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27380881</pmid><doi>10.1038/srep29259</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-07, Vol.6 (1), p.29259-29259, Article 29259 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4933956 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705/1041 639/766/530/2801 Disease Outbreaks Disease prevention Disease Transmission, Infectious - prevention & control Epidemics Humanities and Social Sciences Humans Influenza, Human - epidemiology Influenza, Human - transmission Information Dissemination Investigations Models, Theoretical multidisciplinary Outbreaks Science Search engines Time series Trends |
title | Suppressing disease spreading by using information diffusion on multiplex networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressing%20disease%20spreading%20by%20using%20information%20diffusion%20on%20multiplex%20networks&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Wei&rft.date=2016-07-06&rft.volume=6&rft.issue=1&rft.spage=29259&rft.epage=29259&rft.pages=29259-29259&rft.artnum=29259&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep29259&rft_dat=%3Cproquest_pubme%3E4150622231%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-8e4b5431b321ff5f606eabd9a27c2ab714d8b1b81a7a321578e7f578e7e4b28a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812241998&rft_id=info:pmid/27380881&rfr_iscdi=true |