Loading…

Lysines in the tetramerization domain of p53 selectively modulate G1 arrest

Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of co...

Full description

Saved in:
Bibliographic Details
Published in:Cell cycle (Georgetown, Tex.) Tex.), 2016-06, Vol.15 (11), p.1425-1438
Main Authors: Beckerman, Rachel, Yoh, Kathryn, Mattia-Sansobrino, Melissa, Zupnick, Andrew, Laptenko, Oleg, Karni-Schmidt, Orit, Ahn, Jinwoo, Byeon, In-Ja, Keezer, Susan, Prives, Carol
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-3e5f7dac91c1ab5b0f83762963b0cbcd1a8c615f430b182aaeb2708aae986f643
cites cdi_FETCH-LOGICAL-c411t-3e5f7dac91c1ab5b0f83762963b0cbcd1a8c615f430b182aaeb2708aae986f643
container_end_page 1438
container_issue 11
container_start_page 1425
container_title Cell cycle (Georgetown, Tex.)
container_volume 15
creator Beckerman, Rachel
Yoh, Kathryn
Mattia-Sansobrino, Melissa
Zupnick, Andrew
Laptenko, Oleg
Karni-Schmidt, Orit
Ahn, Jinwoo
Byeon, In-Ja
Keezer, Susan
Prives, Carol
description Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.
doi_str_mv 10.1080/15384101.2016.1170270
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4934057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1795880394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-3e5f7dac91c1ab5b0f83762963b0cbcd1a8c615f430b182aaeb2708aae986f643</originalsourceid><addsrcrecordid>eNpVUU1LxDAQDaK4fv0EJUcvXWeapk0vgohfuOBFzyFNp26kbdakK6y_3hZX0dMbmJn33sxj7BRhjqDgAqVQGQLOU8B8jlhAWsAOO0ApMckA5O5UC5VMQzN2GOMbQKqKEvfZLC1SBMDygD0uNtH1FLnr-bAkPtAQTEfBfZrB-Z7XvjNjyzd8JQWP1JId3Ae1G975et2agfgdchMCxeGY7TWmjXSyxSP2cnvzfH2fLJ7uHq6vFonNEIdEkGyK2tgSLZpKVtAoUeRpmYsKbGVrNMrmKJtMQIUqNYaq8TQ1YqnyJs_EEbv85l2tq45qS_3oudWr4DoTNtobp_93erfUr_5DZ6XIQBYjwfmWIPj39ehcdy5aalvTk19HjUUplQJRTlrye9QGH2Og5lcGQU9B6J8g9BSE3gYx7p399fi79fN58QXczISg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795880394</pqid></control><display><type>article</type><title>Lysines in the tetramerization domain of p53 selectively modulate G1 arrest</title><source>Taylor and Francis Science and Technology Collection</source><source>PubMed Central</source><creator>Beckerman, Rachel ; Yoh, Kathryn ; Mattia-Sansobrino, Melissa ; Zupnick, Andrew ; Laptenko, Oleg ; Karni-Schmidt, Orit ; Ahn, Jinwoo ; Byeon, In-Ja ; Keezer, Susan ; Prives, Carol</creator><creatorcontrib>Beckerman, Rachel ; Yoh, Kathryn ; Mattia-Sansobrino, Melissa ; Zupnick, Andrew ; Laptenko, Oleg ; Karni-Schmidt, Orit ; Ahn, Jinwoo ; Byeon, In-Ja ; Keezer, Susan ; Prives, Carol</creatorcontrib><description>Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.</description><identifier>ISSN: 1538-4101</identifier><identifier>EISSN: 1551-4005</identifier><identifier>DOI: 10.1080/15384101.2016.1170270</identifier><identifier>PMID: 27210019</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Amino Acid Substitution ; Apoptosis ; Arginine - chemistry ; Arginine - metabolism ; Cell Line, Tumor ; Cellular Senescence ; Cyclin G1 - genetics ; Cyclin G1 - metabolism ; Cyclin-Dependent Kinase Inhibitor p21 - genetics ; Cyclin-Dependent Kinase Inhibitor p21 - metabolism ; Epithelial Cells - metabolism ; Epithelial Cells - pathology ; G1 Phase Cell Cycle Checkpoints - genetics ; Glutamine - chemistry ; Glutamine - metabolism ; Humans ; Lysine - chemistry ; Lysine - metabolism ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Models, Molecular ; Mutation ; Protein Domains ; Protein Multimerization ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Signal Transduction ; Structure-Activity Relationship ; Tumor Suppressor Protein p53 - chemistry ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Cell cycle (Georgetown, Tex.), 2016-06, Vol.15 (11), p.1425-1438</ispartof><rights>2016 Taylor &amp; Francis 2016 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-3e5f7dac91c1ab5b0f83762963b0cbcd1a8c615f430b182aaeb2708aae986f643</citedby><cites>FETCH-LOGICAL-c411t-3e5f7dac91c1ab5b0f83762963b0cbcd1a8c615f430b182aaeb2708aae986f643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934057/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934057/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27210019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckerman, Rachel</creatorcontrib><creatorcontrib>Yoh, Kathryn</creatorcontrib><creatorcontrib>Mattia-Sansobrino, Melissa</creatorcontrib><creatorcontrib>Zupnick, Andrew</creatorcontrib><creatorcontrib>Laptenko, Oleg</creatorcontrib><creatorcontrib>Karni-Schmidt, Orit</creatorcontrib><creatorcontrib>Ahn, Jinwoo</creatorcontrib><creatorcontrib>Byeon, In-Ja</creatorcontrib><creatorcontrib>Keezer, Susan</creatorcontrib><creatorcontrib>Prives, Carol</creatorcontrib><title>Lysines in the tetramerization domain of p53 selectively modulate G1 arrest</title><title>Cell cycle (Georgetown, Tex.)</title><addtitle>Cell Cycle</addtitle><description>Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.</description><subject>Amino Acid Substitution</subject><subject>Apoptosis</subject><subject>Arginine - chemistry</subject><subject>Arginine - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cellular Senescence</subject><subject>Cyclin G1 - genetics</subject><subject>Cyclin G1 - metabolism</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - pathology</subject><subject>G1 Phase Cell Cycle Checkpoints - genetics</subject><subject>Glutamine - chemistry</subject><subject>Glutamine - metabolism</subject><subject>Humans</subject><subject>Lysine - chemistry</subject><subject>Lysine - metabolism</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Protein Domains</subject><subject>Protein Multimerization</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Structure, Secondary</subject><subject>Signal Transduction</subject><subject>Structure-Activity Relationship</subject><subject>Tumor Suppressor Protein p53 - chemistry</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>1538-4101</issn><issn>1551-4005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LxDAQDaK4fv0EJUcvXWeapk0vgohfuOBFzyFNp26kbdakK6y_3hZX0dMbmJn33sxj7BRhjqDgAqVQGQLOU8B8jlhAWsAOO0ApMckA5O5UC5VMQzN2GOMbQKqKEvfZLC1SBMDygD0uNtH1FLnr-bAkPtAQTEfBfZrB-Z7XvjNjyzd8JQWP1JId3Ae1G975et2agfgdchMCxeGY7TWmjXSyxSP2cnvzfH2fLJ7uHq6vFonNEIdEkGyK2tgSLZpKVtAoUeRpmYsKbGVrNMrmKJtMQIUqNYaq8TQ1YqnyJs_EEbv85l2tq45qS_3oudWr4DoTNtobp_93erfUr_5DZ6XIQBYjwfmWIPj39ehcdy5aalvTk19HjUUplQJRTlrye9QGH2Og5lcGQU9B6J8g9BSE3gYx7p399fi79fN58QXczISg</recordid><startdate>20160602</startdate><enddate>20160602</enddate><creator>Beckerman, Rachel</creator><creator>Yoh, Kathryn</creator><creator>Mattia-Sansobrino, Melissa</creator><creator>Zupnick, Andrew</creator><creator>Laptenko, Oleg</creator><creator>Karni-Schmidt, Orit</creator><creator>Ahn, Jinwoo</creator><creator>Byeon, In-Ja</creator><creator>Keezer, Susan</creator><creator>Prives, Carol</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160602</creationdate><title>Lysines in the tetramerization domain of p53 selectively modulate G1 arrest</title><author>Beckerman, Rachel ; Yoh, Kathryn ; Mattia-Sansobrino, Melissa ; Zupnick, Andrew ; Laptenko, Oleg ; Karni-Schmidt, Orit ; Ahn, Jinwoo ; Byeon, In-Ja ; Keezer, Susan ; Prives, Carol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-3e5f7dac91c1ab5b0f83762963b0cbcd1a8c615f430b182aaeb2708aae986f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Substitution</topic><topic>Apoptosis</topic><topic>Arginine - chemistry</topic><topic>Arginine - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cellular Senescence</topic><topic>Cyclin G1 - genetics</topic><topic>Cyclin G1 - metabolism</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - pathology</topic><topic>G1 Phase Cell Cycle Checkpoints - genetics</topic><topic>Glutamine - chemistry</topic><topic>Glutamine - metabolism</topic><topic>Humans</topic><topic>Lysine - chemistry</topic><topic>Lysine - metabolism</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Protein Domains</topic><topic>Protein Multimerization</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Structure, Secondary</topic><topic>Signal Transduction</topic><topic>Structure-Activity Relationship</topic><topic>Tumor Suppressor Protein p53 - chemistry</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckerman, Rachel</creatorcontrib><creatorcontrib>Yoh, Kathryn</creatorcontrib><creatorcontrib>Mattia-Sansobrino, Melissa</creatorcontrib><creatorcontrib>Zupnick, Andrew</creatorcontrib><creatorcontrib>Laptenko, Oleg</creatorcontrib><creatorcontrib>Karni-Schmidt, Orit</creatorcontrib><creatorcontrib>Ahn, Jinwoo</creatorcontrib><creatorcontrib>Byeon, In-Ja</creatorcontrib><creatorcontrib>Keezer, Susan</creatorcontrib><creatorcontrib>Prives, Carol</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell cycle (Georgetown, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckerman, Rachel</au><au>Yoh, Kathryn</au><au>Mattia-Sansobrino, Melissa</au><au>Zupnick, Andrew</au><au>Laptenko, Oleg</au><au>Karni-Schmidt, Orit</au><au>Ahn, Jinwoo</au><au>Byeon, In-Ja</au><au>Keezer, Susan</au><au>Prives, Carol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lysines in the tetramerization domain of p53 selectively modulate G1 arrest</atitle><jtitle>Cell cycle (Georgetown, Tex.)</jtitle><addtitle>Cell Cycle</addtitle><date>2016-06-02</date><risdate>2016</risdate><volume>15</volume><issue>11</issue><spage>1425</spage><epage>1438</epage><pages>1425-1438</pages><issn>1538-4101</issn><eissn>1551-4005</eissn><abstract>Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>27210019</pmid><doi>10.1080/15384101.2016.1170270</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-4101
ispartof Cell cycle (Georgetown, Tex.), 2016-06, Vol.15 (11), p.1425-1438
issn 1538-4101
1551-4005
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4934057
source Taylor and Francis Science and Technology Collection; PubMed Central
subjects Amino Acid Substitution
Apoptosis
Arginine - chemistry
Arginine - metabolism
Cell Line, Tumor
Cellular Senescence
Cyclin G1 - genetics
Cyclin G1 - metabolism
Cyclin-Dependent Kinase Inhibitor p21 - genetics
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
Epithelial Cells - metabolism
Epithelial Cells - pathology
G1 Phase Cell Cycle Checkpoints - genetics
Glutamine - chemistry
Glutamine - metabolism
Humans
Lysine - chemistry
Lysine - metabolism
MicroRNAs - genetics
MicroRNAs - metabolism
Models, Molecular
Mutation
Protein Domains
Protein Multimerization
Protein Processing, Post-Translational
Protein Structure, Secondary
Signal Transduction
Structure-Activity Relationship
Tumor Suppressor Protein p53 - chemistry
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
title Lysines in the tetramerization domain of p53 selectively modulate G1 arrest
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lysines%20in%20the%20tetramerization%20domain%20of%20p53%20selectively%20modulate%20G1%20arrest&rft.jtitle=Cell%20cycle%20(Georgetown,%20Tex.)&rft.au=Beckerman,%20Rachel&rft.date=2016-06-02&rft.volume=15&rft.issue=11&rft.spage=1425&rft.epage=1438&rft.pages=1425-1438&rft.issn=1538-4101&rft.eissn=1551-4005&rft_id=info:doi/10.1080/15384101.2016.1170270&rft_dat=%3Cproquest_pubme%3E1795880394%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-3e5f7dac91c1ab5b0f83762963b0cbcd1a8c615f430b182aaeb2708aae986f643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1795880394&rft_id=info:pmid/27210019&rfr_iscdi=true