Loading…
COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex
The conserved oligomeric Golgi (COG) complex is a peripheral membrane protein complex which orchestrates tethering of intra-Golgi vesicles. We found that COG1-4 (lobe A) and 5–8 (lobe B) protein assemblies are present as independent sub-complexes on cell membranes. Super-resolution microscopy demons...
Saved in:
Published in: | Scientific reports 2016-07, Vol.6 (1), p.29139-29139, Article 29139 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The conserved oligomeric Golgi (COG) complex is a peripheral membrane protein complex which orchestrates tethering of intra-Golgi vesicles. We found that COG1-4 (lobe A) and 5–8 (lobe B) protein assemblies are present as independent sub-complexes on cell membranes. Super-resolution microscopy demonstrates that COG sub-complexes are spatially separated on the Golgi with lobe A preferential localization on Golgi stacks and the presence of lobe B on vesicle-like structures, where it physically interacts with v-SNARE GS15. The localization and specific interaction of the COG sub-complexes with the components of vesicle tethering/fusion machinery suggests their different roles in the vesicle tethering cycle. We propose and test a novel model that employs association/disassociation of COG sub-complexes as a mechanism that directs vesicle tethering at Golgi membranes. We demonstrate that defective COG assembly or restriction of tethering complex disassembly by a covalent COG1-COG8 linkage is inhibitory to COG complex activity, supporting the model. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep29139 |