Loading…
Causal inference in economics and marketing
This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2016-07, Vol.113 (27), p.7310-7315 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43 |
container_end_page | 7315 |
container_issue | 27 |
container_start_page | 7310 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Varian, Hal R. |
description | This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference. |
doi_str_mv | 10.1073/pnas.1510479113 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4941501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26470685</jstor_id><sourcerecordid>26470685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhQdRbK2uXSlZCpL2ziPz2AhSfEHBja6HyWRSU5OZmkkE_70prVZX98L57rmHg9A5hikGQWdrb-IUZxiYUBjTAzTGoHDKmYJDNAYgIpWMsBE6iXEFACqTcIxGRFBJMGNjdD03fTR1UvnStc5bN2yJs8GHprIxMb5IGtO-u67yy1N0VJo6urPdnKDX-7uX-WO6eH54mt8uUpth1qXWClC04FRKlikQOZeCZzlgp3LpSmGKAVM8N5QaWigCLOMDrITDpGCO0Qm62fqu-7xxhXW-a02t1201RPnSwVT6v-KrN70Mn5ophjPAg8HVzqANH72LnW6qaF1dG-9CHzWWQJigRNEBnW1R24YYW1f-vsGgNxXrTcV6X_Fwcfk33S__0-kAXGyBVexCu9c5E8BlRr8BjXmAOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802473293</pqid></control><display><type>article</type><title>Causal inference in economics and marketing</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Varian, Hal R.</creator><creatorcontrib>Varian, Hal R.</creatorcontrib><description>This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1510479113</identifier><identifier>PMID: 27382144</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Physical Sciences ; Sackler on Drawing Causal Inference from Big Data ; Social Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-07, Vol.113 (27), p.7310-7315</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43</citedby><cites>FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26470685$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26470685$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27382144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varian, Hal R.</creatorcontrib><title>Causal inference in economics and marketing</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.</description><subject>Physical Sciences</subject><subject>Sackler on Drawing Causal Inference from Big Data</subject><subject>Social Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLw0AUhQdRbK2uXSlZCpL2ziPz2AhSfEHBja6HyWRSU5OZmkkE_70prVZX98L57rmHg9A5hikGQWdrb-IUZxiYUBjTAzTGoHDKmYJDNAYgIpWMsBE6iXEFACqTcIxGRFBJMGNjdD03fTR1UvnStc5bN2yJs8GHprIxMb5IGtO-u67yy1N0VJo6urPdnKDX-7uX-WO6eH54mt8uUpth1qXWClC04FRKlikQOZeCZzlgp3LpSmGKAVM8N5QaWigCLOMDrITDpGCO0Qm62fqu-7xxhXW-a02t1201RPnSwVT6v-KrN70Mn5ophjPAg8HVzqANH72LnW6qaF1dG-9CHzWWQJigRNEBnW1R24YYW1f-vsGgNxXrTcV6X_Fwcfk33S__0-kAXGyBVexCu9c5E8BlRr8BjXmAOw</recordid><startdate>20160705</startdate><enddate>20160705</enddate><creator>Varian, Hal R.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160705</creationdate><title>Causal inference in economics and marketing</title><author>Varian, Hal R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Physical Sciences</topic><topic>Sackler on Drawing Causal Inference from Big Data</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varian, Hal R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varian, Hal R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal inference in economics and marketing</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-07-05</date><risdate>2016</risdate><volume>113</volume><issue>27</issue><spage>7310</spage><epage>7315</epage><pages>7310-7315</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27382144</pmid><doi>10.1073/pnas.1510479113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-07, Vol.113 (27), p.7310-7315 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4941501 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | Physical Sciences Sackler on Drawing Causal Inference from Big Data Social Sciences |
title | Causal inference in economics and marketing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20inference%20in%20economics%20and%20marketing&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Varian,%20Hal%20R.&rft.date=2016-07-05&rft.volume=113&rft.issue=27&rft.spage=7310&rft.epage=7315&rft.pages=7310-7315&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1510479113&rft_dat=%3Cjstor_pubme%3E26470685%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1802473293&rft_id=info:pmid/27382144&rft_jstor_id=26470685&rfr_iscdi=true |