Loading…

Causal inference in economics and marketing

This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2016-07, Vol.113 (27), p.7310-7315
Main Author: Varian, Hal R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43
cites cdi_FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43
container_end_page 7315
container_issue 27
container_start_page 7310
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Varian, Hal R.
description This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.
doi_str_mv 10.1073/pnas.1510479113
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4941501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26470685</jstor_id><sourcerecordid>26470685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43</originalsourceid><addsrcrecordid>eNpVkEtLw0AUhQdRbK2uXSlZCpL2ziPz2AhSfEHBja6HyWRSU5OZmkkE_70prVZX98L57rmHg9A5hikGQWdrb-IUZxiYUBjTAzTGoHDKmYJDNAYgIpWMsBE6iXEFACqTcIxGRFBJMGNjdD03fTR1UvnStc5bN2yJs8GHprIxMb5IGtO-u67yy1N0VJo6urPdnKDX-7uX-WO6eH54mt8uUpth1qXWClC04FRKlikQOZeCZzlgp3LpSmGKAVM8N5QaWigCLOMDrITDpGCO0Qm62fqu-7xxhXW-a02t1201RPnSwVT6v-KrN70Mn5ophjPAg8HVzqANH72LnW6qaF1dG-9CHzWWQJigRNEBnW1R24YYW1f-vsGgNxXrTcV6X_Fwcfk33S__0-kAXGyBVexCu9c5E8BlRr8BjXmAOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802473293</pqid></control><display><type>article</type><title>Causal inference in economics and marketing</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Varian, Hal R.</creator><creatorcontrib>Varian, Hal R.</creatorcontrib><description>This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1510479113</identifier><identifier>PMID: 27382144</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Physical Sciences ; Sackler on Drawing Causal Inference from Big Data ; Social Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-07, Vol.113 (27), p.7310-7315</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43</citedby><cites>FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26470685$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26470685$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27382144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varian, Hal R.</creatorcontrib><title>Causal inference in economics and marketing</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.</description><subject>Physical Sciences</subject><subject>Sackler on Drawing Causal Inference from Big Data</subject><subject>Social Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLw0AUhQdRbK2uXSlZCpL2ziPz2AhSfEHBja6HyWRSU5OZmkkE_70prVZX98L57rmHg9A5hikGQWdrb-IUZxiYUBjTAzTGoHDKmYJDNAYgIpWMsBE6iXEFACqTcIxGRFBJMGNjdD03fTR1UvnStc5bN2yJs8GHprIxMb5IGtO-u67yy1N0VJo6urPdnKDX-7uX-WO6eH54mt8uUpth1qXWClC04FRKlikQOZeCZzlgp3LpSmGKAVM8N5QaWigCLOMDrITDpGCO0Qm62fqu-7xxhXW-a02t1201RPnSwVT6v-KrN70Mn5ophjPAg8HVzqANH72LnW6qaF1dG-9CHzWWQJigRNEBnW1R24YYW1f-vsGgNxXrTcV6X_Fwcfk33S__0-kAXGyBVexCu9c5E8BlRr8BjXmAOw</recordid><startdate>20160705</startdate><enddate>20160705</enddate><creator>Varian, Hal R.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160705</creationdate><title>Causal inference in economics and marketing</title><author>Varian, Hal R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Physical Sciences</topic><topic>Sackler on Drawing Causal Inference from Big Data</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varian, Hal R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varian, Hal R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal inference in economics and marketing</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-07-05</date><risdate>2016</risdate><volume>113</volume><issue>27</issue><spage>7310</spage><epage>7315</epage><pages>7310-7315</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27382144</pmid><doi>10.1073/pnas.1510479113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-07, Vol.113 (27), p.7310-7315
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4941501
source PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection
subjects Physical Sciences
Sackler on Drawing Causal Inference from Big Data
Social Sciences
title Causal inference in economics and marketing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20inference%20in%20economics%20and%20marketing&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Varian,%20Hal%20R.&rft.date=2016-07-05&rft.volume=113&rft.issue=27&rft.spage=7310&rft.epage=7315&rft.pages=7310-7315&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1510479113&rft_dat=%3Cjstor_pubme%3E26470685%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1802473293&rft_id=info:pmid/27382144&rft_jstor_id=26470685&rfr_iscdi=true