Loading…
A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and...
Saved in:
Published in: | Journal of the American Chemical Society 2016-04, Vol.138 (13), p.4439-4447 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513 |
---|---|
cites | cdi_FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513 |
container_end_page | 4447 |
container_issue | 13 |
container_start_page | 4439 |
container_title | Journal of the American Chemical Society |
container_volume | 138 |
creator | Xu, Weiming Nathwani, Bhavik Lin, Chenxiang Wang, Jing Karatekin, Erdem Pincet, Frederic Shih, William Rothman, James E |
description | Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved. |
doi_str_mv | 10.1021/jacs.5b13107 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4950518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431853785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS0Egi3lxhn5yKFZPLYndi6VVhQKFSyoLWfLyTrbrJIY7ASJ_vp6xRaKVInDaDQzn589foQcApsC43CyslWcYgkCmNoiE0DOMgSeb5MJY4xnSudij3yIcZVKyTXskj2eF0IrhhPybUZvg18G23W2bB39Mp_Rm9AsbdfQ29YOtQ8dHXzqLW3f_Hb0x3z2_SzS1KfXriuD7R09H2Pj-49kp7ZtdAebvE_uzs9-nl5kVzdfL09nV5mVyIZM42KhlEReoZLW5c6xXDC0KIXkzIIsdI26rLHSNegcORQVryvnCrSiQBD75POz7v1Ydm5RuX4ItjX3oelseDLeNubtpG9-maV_NLJAhqCTwPFGIPiH0cXBdE2sXNumXfwYDZcCNAqV4j0UlCp0AQpEQj89o1XwMQZXv7wImFk7ZdZOmY1TCT_6d4sX-K81r1evT638GPr0qf_X-gOOqJq3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779891713</pqid></control><display><type>article</type><title>A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Xu, Weiming ; Nathwani, Bhavik ; Lin, Chenxiang ; Wang, Jing ; Karatekin, Erdem ; Pincet, Frederic ; Shih, William ; Rothman, James E</creator><creatorcontrib>Xu, Weiming ; Nathwani, Bhavik ; Lin, Chenxiang ; Wang, Jing ; Karatekin, Erdem ; Pincet, Frederic ; Shih, William ; Rothman, James E</creatorcontrib><description>Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b13107</identifier><identifier>PMID: 26938705</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA - metabolism ; DNA, Single-Stranded - chemistry ; lipid bilayers ; Lipid Bilayers - chemistry ; lipids ; Liposomes - chemistry ; Membrane Fusion ; mixing ; Protein Binding ; single-stranded DNA ; SNARE proteins ; SNARE Proteins - metabolism ; Vesicular Transport Proteins - metabolism</subject><ispartof>Journal of the American Chemical Society, 2016-04, Vol.138 (13), p.4439-4447</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513</citedby><cites>FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26938705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Weiming</creatorcontrib><creatorcontrib>Nathwani, Bhavik</creatorcontrib><creatorcontrib>Lin, Chenxiang</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Karatekin, Erdem</creatorcontrib><creatorcontrib>Pincet, Frederic</creatorcontrib><creatorcontrib>Shih, William</creatorcontrib><creatorcontrib>Rothman, James E</creatorcontrib><title>A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.</description><subject>DNA - metabolism</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>lipid bilayers</subject><subject>Lipid Bilayers - chemistry</subject><subject>lipids</subject><subject>Liposomes - chemistry</subject><subject>Membrane Fusion</subject><subject>mixing</subject><subject>Protein Binding</subject><subject>single-stranded DNA</subject><subject>SNARE proteins</subject><subject>SNARE Proteins - metabolism</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQhS0Egi3lxhn5yKFZPLYndi6VVhQKFSyoLWfLyTrbrJIY7ASJ_vp6xRaKVInDaDQzn589foQcApsC43CyslWcYgkCmNoiE0DOMgSeb5MJY4xnSudij3yIcZVKyTXskj2eF0IrhhPybUZvg18G23W2bB39Mp_Rm9AsbdfQ29YOtQ8dHXzqLW3f_Hb0x3z2_SzS1KfXriuD7R09H2Pj-49kp7ZtdAebvE_uzs9-nl5kVzdfL09nV5mVyIZM42KhlEReoZLW5c6xXDC0KIXkzIIsdI26rLHSNegcORQVryvnCrSiQBD75POz7v1Ydm5RuX4ItjX3oelseDLeNubtpG9-maV_NLJAhqCTwPFGIPiH0cXBdE2sXNumXfwYDZcCNAqV4j0UlCp0AQpEQj89o1XwMQZXv7wImFk7ZdZOmY1TCT_6d4sX-K81r1evT638GPr0qf_X-gOOqJq3</recordid><startdate>20160406</startdate><enddate>20160406</enddate><creator>Xu, Weiming</creator><creator>Nathwani, Bhavik</creator><creator>Lin, Chenxiang</creator><creator>Wang, Jing</creator><creator>Karatekin, Erdem</creator><creator>Pincet, Frederic</creator><creator>Shih, William</creator><creator>Rothman, James E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160406</creationdate><title>A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion</title><author>Xu, Weiming ; Nathwani, Bhavik ; Lin, Chenxiang ; Wang, Jing ; Karatekin, Erdem ; Pincet, Frederic ; Shih, William ; Rothman, James E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>DNA - metabolism</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>lipid bilayers</topic><topic>Lipid Bilayers - chemistry</topic><topic>lipids</topic><topic>Liposomes - chemistry</topic><topic>Membrane Fusion</topic><topic>mixing</topic><topic>Protein Binding</topic><topic>single-stranded DNA</topic><topic>SNARE proteins</topic><topic>SNARE Proteins - metabolism</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weiming</creatorcontrib><creatorcontrib>Nathwani, Bhavik</creatorcontrib><creatorcontrib>Lin, Chenxiang</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Karatekin, Erdem</creatorcontrib><creatorcontrib>Pincet, Frederic</creatorcontrib><creatorcontrib>Shih, William</creatorcontrib><creatorcontrib>Rothman, James E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weiming</au><au>Nathwani, Bhavik</au><au>Lin, Chenxiang</au><au>Wang, Jing</au><au>Karatekin, Erdem</au><au>Pincet, Frederic</au><au>Shih, William</au><au>Rothman, James E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-04-06</date><risdate>2016</risdate><volume>138</volume><issue>13</issue><spage>4439</spage><epage>4447</epage><pages>4439-4447</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26938705</pmid><doi>10.1021/jacs.5b13107</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2016-04, Vol.138 (13), p.4439-4447 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4950518 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | DNA - metabolism DNA, Single-Stranded - chemistry lipid bilayers Lipid Bilayers - chemistry lipids Liposomes - chemistry Membrane Fusion mixing Protein Binding single-stranded DNA SNARE proteins SNARE Proteins - metabolism Vesicular Transport Proteins - metabolism |
title | A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Programmable%20DNA%20Origami%20Platform%20to%20Organize%20SNAREs%20for%20Membrane%20Fusion&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Xu,%20Weiming&rft.date=2016-04-06&rft.volume=138&rft.issue=13&rft.spage=4439&rft.epage=4447&rft.pages=4439-4447&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b13107&rft_dat=%3Cproquest_pubme%3E2431853785%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1779891713&rft_id=info:pmid/26938705&rfr_iscdi=true |