Loading…

A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2016-04, Vol.138 (13), p.4439-4447
Main Authors: Xu, Weiming, Nathwani, Bhavik, Lin, Chenxiang, Wang, Jing, Karatekin, Erdem, Pincet, Frederic, Shih, William, Rothman, James E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513
cites cdi_FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513
container_end_page 4447
container_issue 13
container_start_page 4439
container_title Journal of the American Chemical Society
container_volume 138
creator Xu, Weiming
Nathwani, Bhavik
Lin, Chenxiang
Wang, Jing
Karatekin, Erdem
Pincet, Frederic
Shih, William
Rothman, James E
description Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.
doi_str_mv 10.1021/jacs.5b13107
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4950518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431853785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhS0Egi3lxhn5yKFZPLYndi6VVhQKFSyoLWfLyTrbrJIY7ASJ_vp6xRaKVInDaDQzn589foQcApsC43CyslWcYgkCmNoiE0DOMgSeb5MJY4xnSudij3yIcZVKyTXskj2eF0IrhhPybUZvg18G23W2bB39Mp_Rm9AsbdfQ29YOtQ8dHXzqLW3f_Hb0x3z2_SzS1KfXriuD7R09H2Pj-49kp7ZtdAebvE_uzs9-nl5kVzdfL09nV5mVyIZM42KhlEReoZLW5c6xXDC0KIXkzIIsdI26rLHSNegcORQVryvnCrSiQBD75POz7v1Ydm5RuX4ItjX3oelseDLeNubtpG9-maV_NLJAhqCTwPFGIPiH0cXBdE2sXNumXfwYDZcCNAqV4j0UlCp0AQpEQj89o1XwMQZXv7wImFk7ZdZOmY1TCT_6d4sX-K81r1evT638GPr0qf_X-gOOqJq3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779891713</pqid></control><display><type>article</type><title>A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Xu, Weiming ; Nathwani, Bhavik ; Lin, Chenxiang ; Wang, Jing ; Karatekin, Erdem ; Pincet, Frederic ; Shih, William ; Rothman, James E</creator><creatorcontrib>Xu, Weiming ; Nathwani, Bhavik ; Lin, Chenxiang ; Wang, Jing ; Karatekin, Erdem ; Pincet, Frederic ; Shih, William ; Rothman, James E</creatorcontrib><description>Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b13107</identifier><identifier>PMID: 26938705</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA - metabolism ; DNA, Single-Stranded - chemistry ; lipid bilayers ; Lipid Bilayers - chemistry ; lipids ; Liposomes - chemistry ; Membrane Fusion ; mixing ; Protein Binding ; single-stranded DNA ; SNARE proteins ; SNARE Proteins - metabolism ; Vesicular Transport Proteins - metabolism</subject><ispartof>Journal of the American Chemical Society, 2016-04, Vol.138 (13), p.4439-4447</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513</citedby><cites>FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26938705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Weiming</creatorcontrib><creatorcontrib>Nathwani, Bhavik</creatorcontrib><creatorcontrib>Lin, Chenxiang</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Karatekin, Erdem</creatorcontrib><creatorcontrib>Pincet, Frederic</creatorcontrib><creatorcontrib>Shih, William</creatorcontrib><creatorcontrib>Rothman, James E</creatorcontrib><title>A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.</description><subject>DNA - metabolism</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>lipid bilayers</subject><subject>Lipid Bilayers - chemistry</subject><subject>lipids</subject><subject>Liposomes - chemistry</subject><subject>Membrane Fusion</subject><subject>mixing</subject><subject>Protein Binding</subject><subject>single-stranded DNA</subject><subject>SNARE proteins</subject><subject>SNARE Proteins - metabolism</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQhS0Egi3lxhn5yKFZPLYndi6VVhQKFSyoLWfLyTrbrJIY7ASJ_vp6xRaKVInDaDQzn589foQcApsC43CyslWcYgkCmNoiE0DOMgSeb5MJY4xnSudij3yIcZVKyTXskj2eF0IrhhPybUZvg18G23W2bB39Mp_Rm9AsbdfQ29YOtQ8dHXzqLW3f_Hb0x3z2_SzS1KfXriuD7R09H2Pj-49kp7ZtdAebvE_uzs9-nl5kVzdfL09nV5mVyIZM42KhlEReoZLW5c6xXDC0KIXkzIIsdI26rLHSNegcORQVryvnCrSiQBD75POz7v1Ydm5RuX4ItjX3oelseDLeNubtpG9-maV_NLJAhqCTwPFGIPiH0cXBdE2sXNumXfwYDZcCNAqV4j0UlCp0AQpEQj89o1XwMQZXv7wImFk7ZdZOmY1TCT_6d4sX-K81r1evT638GPr0qf_X-gOOqJq3</recordid><startdate>20160406</startdate><enddate>20160406</enddate><creator>Xu, Weiming</creator><creator>Nathwani, Bhavik</creator><creator>Lin, Chenxiang</creator><creator>Wang, Jing</creator><creator>Karatekin, Erdem</creator><creator>Pincet, Frederic</creator><creator>Shih, William</creator><creator>Rothman, James E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160406</creationdate><title>A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion</title><author>Xu, Weiming ; Nathwani, Bhavik ; Lin, Chenxiang ; Wang, Jing ; Karatekin, Erdem ; Pincet, Frederic ; Shih, William ; Rothman, James E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>DNA - metabolism</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>lipid bilayers</topic><topic>Lipid Bilayers - chemistry</topic><topic>lipids</topic><topic>Liposomes - chemistry</topic><topic>Membrane Fusion</topic><topic>mixing</topic><topic>Protein Binding</topic><topic>single-stranded DNA</topic><topic>SNARE proteins</topic><topic>SNARE Proteins - metabolism</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weiming</creatorcontrib><creatorcontrib>Nathwani, Bhavik</creatorcontrib><creatorcontrib>Lin, Chenxiang</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Karatekin, Erdem</creatorcontrib><creatorcontrib>Pincet, Frederic</creatorcontrib><creatorcontrib>Shih, William</creatorcontrib><creatorcontrib>Rothman, James E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weiming</au><au>Nathwani, Bhavik</au><au>Lin, Chenxiang</au><au>Wang, Jing</au><au>Karatekin, Erdem</au><au>Pincet, Frederic</au><au>Shih, William</au><au>Rothman, James E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-04-06</date><risdate>2016</risdate><volume>138</volume><issue>13</issue><spage>4439</spage><epage>4447</epage><pages>4439-4447</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26938705</pmid><doi>10.1021/jacs.5b13107</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2016-04, Vol.138 (13), p.4439-4447
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4950518
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects DNA - metabolism
DNA, Single-Stranded - chemistry
lipid bilayers
Lipid Bilayers - chemistry
lipids
Liposomes - chemistry
Membrane Fusion
mixing
Protein Binding
single-stranded DNA
SNARE proteins
SNARE Proteins - metabolism
Vesicular Transport Proteins - metabolism
title A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Programmable%20DNA%20Origami%20Platform%20to%20Organize%20SNAREs%20for%20Membrane%20Fusion&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Xu,%20Weiming&rft.date=2016-04-06&rft.volume=138&rft.issue=13&rft.spage=4439&rft.epage=4447&rft.pages=4439-4447&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b13107&rft_dat=%3Cproquest_pubme%3E2431853785%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a450t-85dd77452c574ae6ee06305a543420a1498f58bf5c8f1865219c2fcee95a39513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1779891713&rft_id=info:pmid/26938705&rfr_iscdi=true