Loading…

Association by Spatial Interpolation between Ozone Levels and Lung Function of Residents at an Industrial Complex in South Korea

Spatial interpolation is employed to improve exposure estimates and to assess adverse health effects associated with environmental risk factors. Since various studies have reported that high ozone (O₃) concentrations can give rise to adverse effects on respiratory symptoms and lung function, we inve...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2016-07, Vol.13 (7), p.728
Main Authors: Jung, Soon-Won, Lee, Kyoungho, Cho, Yong-Sung, Choi, Ji-Hee, Yang, Wonho, Kang, Tack-Shin, Park, Choonghee, Kim, Geun-Bae, Yu, Seung-Do, Son, Bu-Soon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spatial interpolation is employed to improve exposure estimates and to assess adverse health effects associated with environmental risk factors. Since various studies have reported that high ozone (O₃) concentrations can give rise to adverse effects on respiratory symptoms and lung function, we investigated the association between O₃ levels and lung function using a variety of spatial interpolation techniques and evaluated how different methods for estimating exposure may influence health results for a cohort from an industrial complex (Gwangyang Bay) in South Korea in 2009. To estimate daily concentrations of O₃ in each subject, four different methods were used, which include simple averaging, nearest neighbor, inverse distance weighting, and kriging. Also, to compare the association between O₃ levels and lung function by age-groups, we explored ozone's impacts on three age-related groups: children (9-14 years), adults (15-64 years), and the elderly (≥65 years). The overall change of effect size on lung function in each age group tended to show similar patterns for lag and methods for estimating exposure. A significant negative association was only observed between O₃ levels and FVC and FEV₁ for most of the lag and methods in children. The largest effect of O₃ levels was found at the average for the lung function test day and last 2 days (0-2 days). In conclusions, the spatial interpolation methods may benefit in providing individual-level exposure with appropriate temporal resolution from ambient monitors. However, time-activity patterns of residents, monitoring site locations, methodological choices, and other factors should be considered to minimize exposure misclassification.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph13070728