Loading…
Mechanisms of drug resistance: daptomycin resistance
Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram‐positive pathogens, including multidrug‐resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep‐seated infections caus...
Saved in:
Published in: | Annals of the New York Academy of Sciences 2015-09, Vol.1354 (1), p.32-53 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333 |
---|---|
cites | cdi_FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333 |
container_end_page | 53 |
container_issue | 1 |
container_start_page | 32 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1354 |
creator | Tran, Truc T. Munita, Jose M. Arias, Cesar A. |
description | Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram‐positive pathogens, including multidrug‐resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep‐seated infections caused by Gram‐positive organisms. Unfortunately, DAP resistance (DAP‐R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP‐R in Bacillus subtilis and other Gram‐positive bacteria indicate that the genetic pathways of DAP‐R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP‐R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram‐positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram‐positive pathogens and discuss the clinical implications for therapy against these important bacteria. |
doi_str_mv | 10.1111/nyas.12948 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4966536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770286432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333</originalsourceid><addsrcrecordid>eNqNkdtLHDEUh0Op6FZ96R8gC30pwmguk3MmPhRWqRe8gkL1KaSZjI7OZU12Wve_N-Pqoj6IIRA4-c6Xy4-Q74xusDg2m6kJG4yrNPtCBgxTlQAI_pUMKEVMMsXFEvkWwi2ljGcpLpIlDqmSWYYDkh47e2OaMtRh2BbD3HfXQ-9CGSamsW5rmJvxpK2ntmxelVfIQmGq4Faf12Vysfv7Ymc_OTrdO9gZHSUWOGQJK8CiFMByjjR31pgcgAK1TObWiCKWpVE5KOUs0EJx7GcEEAsphFgmv2bacfe3drl1zcSbSo99WRs_1a0p9dudprzR1-0_nSqAeG4U_HwW-Pa-c2Gi6zJYV1WmcW0XNEOkPINU8E-gEUSpsEd_vENv28438SN6CkGyVMpIrc8o69sQvCvm92ZU97HpPjb9FFuE116_dI6-5BQBNgP-l5WbfqDSJ1ej8xdpMuuJqbmHeY_xdxpQoNR_Tvb0GT28PNwWTG-LR69asPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727651455</pqid></control><display><type>article</type><title>Mechanisms of drug resistance: daptomycin resistance</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Tran, Truc T. ; Munita, Jose M. ; Arias, Cesar A.</creator><creatorcontrib>Tran, Truc T. ; Munita, Jose M. ; Arias, Cesar A.</creatorcontrib><description>Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram‐positive pathogens, including multidrug‐resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep‐seated infections caused by Gram‐positive organisms. Unfortunately, DAP resistance (DAP‐R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP‐R in Bacillus subtilis and other Gram‐positive bacteria indicate that the genetic pathways of DAP‐R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP‐R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram‐positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram‐positive pathogens and discuss the clinical implications for therapy against these important bacteria.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.12948</identifier><identifier>PMID: 26495887</identifier><identifier>CODEN: ANYAA9</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Anti-Bacterial Agents - pharmacology ; Bacillus subtilis ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Cell Membrane - genetics ; Cell Membrane - metabolism ; Cell Wall - genetics ; Cell Wall - metabolism ; Daptomycin - pharmacology ; daptomycin resistance ; Drug resistance ; Drug Resistance, Bacterial ; Enterococcus ; Envelopes ; Genetics ; Gram-positive bacteria ; Gram-Positive Bacteria - drug effects ; Gram-Positive Bacteria - genetics ; Gram-Positive Bacteria - metabolism ; Gram-Positive Bacterial Infections - microbiology ; Humans ; Membranes ; Mutation ; Organisms ; Pathogens ; Physiology ; Staphylococcus aureus</subject><ispartof>Annals of the New York Academy of Sciences, 2015-09, Vol.1354 (1), p.32-53</ispartof><rights>2015 New York Academy of Sciences.</rights><rights>2015 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333</citedby><cites>FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26495887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Truc T.</creatorcontrib><creatorcontrib>Munita, Jose M.</creatorcontrib><creatorcontrib>Arias, Cesar A.</creatorcontrib><title>Mechanisms of drug resistance: daptomycin resistance</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann. N.Y. Acad. Sci</addtitle><description>Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram‐positive pathogens, including multidrug‐resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep‐seated infections caused by Gram‐positive organisms. Unfortunately, DAP resistance (DAP‐R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP‐R in Bacillus subtilis and other Gram‐positive bacteria indicate that the genetic pathways of DAP‐R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP‐R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram‐positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram‐positive pathogens and discuss the clinical implications for therapy against these important bacteria.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bacillus subtilis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Wall - genetics</subject><subject>Cell Wall - metabolism</subject><subject>Daptomycin - pharmacology</subject><subject>daptomycin resistance</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial</subject><subject>Enterococcus</subject><subject>Envelopes</subject><subject>Genetics</subject><subject>Gram-positive bacteria</subject><subject>Gram-Positive Bacteria - drug effects</subject><subject>Gram-Positive Bacteria - genetics</subject><subject>Gram-Positive Bacteria - metabolism</subject><subject>Gram-Positive Bacterial Infections - microbiology</subject><subject>Humans</subject><subject>Membranes</subject><subject>Mutation</subject><subject>Organisms</subject><subject>Pathogens</subject><subject>Physiology</subject><subject>Staphylococcus aureus</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkdtLHDEUh0Op6FZ96R8gC30pwmguk3MmPhRWqRe8gkL1KaSZjI7OZU12Wve_N-Pqoj6IIRA4-c6Xy4-Q74xusDg2m6kJG4yrNPtCBgxTlQAI_pUMKEVMMsXFEvkWwi2ljGcpLpIlDqmSWYYDkh47e2OaMtRh2BbD3HfXQ-9CGSamsW5rmJvxpK2ntmxelVfIQmGq4Faf12Vysfv7Ymc_OTrdO9gZHSUWOGQJK8CiFMByjjR31pgcgAK1TObWiCKWpVE5KOUs0EJx7GcEEAsphFgmv2bacfe3drl1zcSbSo99WRs_1a0p9dudprzR1-0_nSqAeG4U_HwW-Pa-c2Gi6zJYV1WmcW0XNEOkPINU8E-gEUSpsEd_vENv28438SN6CkGyVMpIrc8o69sQvCvm92ZU97HpPjb9FFuE116_dI6-5BQBNgP-l5WbfqDSJ1ej8xdpMuuJqbmHeY_xdxpQoNR_Tvb0GT28PNwWTG-LR69asPc</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Tran, Truc T.</creator><creator>Munita, Jose M.</creator><creator>Arias, Cesar A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>201509</creationdate><title>Mechanisms of drug resistance: daptomycin resistance</title><author>Tran, Truc T. ; Munita, Jose M. ; Arias, Cesar A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bacillus subtilis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Wall - genetics</topic><topic>Cell Wall - metabolism</topic><topic>Daptomycin - pharmacology</topic><topic>daptomycin resistance</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial</topic><topic>Enterococcus</topic><topic>Envelopes</topic><topic>Genetics</topic><topic>Gram-positive bacteria</topic><topic>Gram-Positive Bacteria - drug effects</topic><topic>Gram-Positive Bacteria - genetics</topic><topic>Gram-Positive Bacteria - metabolism</topic><topic>Gram-Positive Bacterial Infections - microbiology</topic><topic>Humans</topic><topic>Membranes</topic><topic>Mutation</topic><topic>Organisms</topic><topic>Pathogens</topic><topic>Physiology</topic><topic>Staphylococcus aureus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Truc T.</creatorcontrib><creatorcontrib>Munita, Jose M.</creatorcontrib><creatorcontrib>Arias, Cesar A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Truc T.</au><au>Munita, Jose M.</au><au>Arias, Cesar A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of drug resistance: daptomycin resistance</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann. N.Y. Acad. Sci</addtitle><date>2015-09</date><risdate>2015</risdate><volume>1354</volume><issue>1</issue><spage>32</spage><epage>53</epage><pages>32-53</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><coden>ANYAA9</coden><abstract>Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram‐positive pathogens, including multidrug‐resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep‐seated infections caused by Gram‐positive organisms. Unfortunately, DAP resistance (DAP‐R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP‐R in Bacillus subtilis and other Gram‐positive bacteria indicate that the genetic pathways of DAP‐R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP‐R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram‐positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram‐positive pathogens and discuss the clinical implications for therapy against these important bacteria.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26495887</pmid><doi>10.1111/nyas.12948</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2015-09, Vol.1354 (1), p.32-53 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4966536 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Anti-Bacterial Agents - pharmacology Bacillus subtilis Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Cell Membrane - genetics Cell Membrane - metabolism Cell Wall - genetics Cell Wall - metabolism Daptomycin - pharmacology daptomycin resistance Drug resistance Drug Resistance, Bacterial Enterococcus Envelopes Genetics Gram-positive bacteria Gram-Positive Bacteria - drug effects Gram-Positive Bacteria - genetics Gram-Positive Bacteria - metabolism Gram-Positive Bacterial Infections - microbiology Humans Membranes Mutation Organisms Pathogens Physiology Staphylococcus aureus |
title | Mechanisms of drug resistance: daptomycin resistance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20drug%20resistance:%20daptomycin%20resistance&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Tran,%20Truc%20T.&rft.date=2015-09&rft.volume=1354&rft.issue=1&rft.spage=32&rft.epage=53&rft.pages=32-53&rft.issn=0077-8923&rft.eissn=1749-6632&rft.coden=ANYAA9&rft_id=info:doi/10.1111/nyas.12948&rft_dat=%3Cproquest_pubme%3E1770286432%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1727651455&rft_id=info:pmid/26495887&rfr_iscdi=true |