Loading…

Mechanisms of drug resistance: daptomycin resistance

Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram‐positive pathogens, including multidrug‐resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep‐seated infections caus...

Full description

Saved in:
Bibliographic Details
Published in:Annals of the New York Academy of Sciences 2015-09, Vol.1354 (1), p.32-53
Main Authors: Tran, Truc T., Munita, Jose M., Arias, Cesar A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333
cites cdi_FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333
container_end_page 53
container_issue 1
container_start_page 32
container_title Annals of the New York Academy of Sciences
container_volume 1354
creator Tran, Truc T.
Munita, Jose M.
Arias, Cesar A.
description Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram‐positive pathogens, including multidrug‐resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep‐seated infections caused by Gram‐positive organisms. Unfortunately, DAP resistance (DAP‐R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP‐R in Bacillus subtilis and other Gram‐positive bacteria indicate that the genetic pathways of DAP‐R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP‐R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram‐positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram‐positive pathogens and discuss the clinical implications for therapy against these important bacteria.
doi_str_mv 10.1111/nyas.12948
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4966536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770286432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333</originalsourceid><addsrcrecordid>eNqNkdtLHDEUh0Op6FZ96R8gC30pwmguk3MmPhRWqRe8gkL1KaSZjI7OZU12Wve_N-Pqoj6IIRA4-c6Xy4-Q74xusDg2m6kJG4yrNPtCBgxTlQAI_pUMKEVMMsXFEvkWwi2ljGcpLpIlDqmSWYYDkh47e2OaMtRh2BbD3HfXQ-9CGSamsW5rmJvxpK2ntmxelVfIQmGq4Faf12Vysfv7Ymc_OTrdO9gZHSUWOGQJK8CiFMByjjR31pgcgAK1TObWiCKWpVE5KOUs0EJx7GcEEAsphFgmv2bacfe3drl1zcSbSo99WRs_1a0p9dudprzR1-0_nSqAeG4U_HwW-Pa-c2Gi6zJYV1WmcW0XNEOkPINU8E-gEUSpsEd_vENv28438SN6CkGyVMpIrc8o69sQvCvm92ZU97HpPjb9FFuE116_dI6-5BQBNgP-l5WbfqDSJ1ej8xdpMuuJqbmHeY_xdxpQoNR_Tvb0GT28PNwWTG-LR69asPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727651455</pqid></control><display><type>article</type><title>Mechanisms of drug resistance: daptomycin resistance</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Tran, Truc T. ; Munita, Jose M. ; Arias, Cesar A.</creator><creatorcontrib>Tran, Truc T. ; Munita, Jose M. ; Arias, Cesar A.</creatorcontrib><description>Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram‐positive pathogens, including multidrug‐resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep‐seated infections caused by Gram‐positive organisms. Unfortunately, DAP resistance (DAP‐R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP‐R in Bacillus subtilis and other Gram‐positive bacteria indicate that the genetic pathways of DAP‐R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP‐R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram‐positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram‐positive pathogens and discuss the clinical implications for therapy against these important bacteria.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/nyas.12948</identifier><identifier>PMID: 26495887</identifier><identifier>CODEN: ANYAA9</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Anti-Bacterial Agents - pharmacology ; Bacillus subtilis ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Cell Membrane - genetics ; Cell Membrane - metabolism ; Cell Wall - genetics ; Cell Wall - metabolism ; Daptomycin - pharmacology ; daptomycin resistance ; Drug resistance ; Drug Resistance, Bacterial ; Enterococcus ; Envelopes ; Genetics ; Gram-positive bacteria ; Gram-Positive Bacteria - drug effects ; Gram-Positive Bacteria - genetics ; Gram-Positive Bacteria - metabolism ; Gram-Positive Bacterial Infections - microbiology ; Humans ; Membranes ; Mutation ; Organisms ; Pathogens ; Physiology ; Staphylococcus aureus</subject><ispartof>Annals of the New York Academy of Sciences, 2015-09, Vol.1354 (1), p.32-53</ispartof><rights>2015 New York Academy of Sciences.</rights><rights>2015 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333</citedby><cites>FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26495887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Truc T.</creatorcontrib><creatorcontrib>Munita, Jose M.</creatorcontrib><creatorcontrib>Arias, Cesar A.</creatorcontrib><title>Mechanisms of drug resistance: daptomycin resistance</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann. N.Y. Acad. Sci</addtitle><description>Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram‐positive pathogens, including multidrug‐resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep‐seated infections caused by Gram‐positive organisms. Unfortunately, DAP resistance (DAP‐R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP‐R in Bacillus subtilis and other Gram‐positive bacteria indicate that the genetic pathways of DAP‐R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP‐R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram‐positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram‐positive pathogens and discuss the clinical implications for therapy against these important bacteria.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Bacillus subtilis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Cell Membrane - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Wall - genetics</subject><subject>Cell Wall - metabolism</subject><subject>Daptomycin - pharmacology</subject><subject>daptomycin resistance</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial</subject><subject>Enterococcus</subject><subject>Envelopes</subject><subject>Genetics</subject><subject>Gram-positive bacteria</subject><subject>Gram-Positive Bacteria - drug effects</subject><subject>Gram-Positive Bacteria - genetics</subject><subject>Gram-Positive Bacteria - metabolism</subject><subject>Gram-Positive Bacterial Infections - microbiology</subject><subject>Humans</subject><subject>Membranes</subject><subject>Mutation</subject><subject>Organisms</subject><subject>Pathogens</subject><subject>Physiology</subject><subject>Staphylococcus aureus</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkdtLHDEUh0Op6FZ96R8gC30pwmguk3MmPhRWqRe8gkL1KaSZjI7OZU12Wve_N-Pqoj6IIRA4-c6Xy4-Q74xusDg2m6kJG4yrNPtCBgxTlQAI_pUMKEVMMsXFEvkWwi2ljGcpLpIlDqmSWYYDkh47e2OaMtRh2BbD3HfXQ-9CGSamsW5rmJvxpK2ntmxelVfIQmGq4Faf12Vysfv7Ymc_OTrdO9gZHSUWOGQJK8CiFMByjjR31pgcgAK1TObWiCKWpVE5KOUs0EJx7GcEEAsphFgmv2bacfe3drl1zcSbSo99WRs_1a0p9dudprzR1-0_nSqAeG4U_HwW-Pa-c2Gi6zJYV1WmcW0XNEOkPINU8E-gEUSpsEd_vENv28438SN6CkGyVMpIrc8o69sQvCvm92ZU97HpPjb9FFuE116_dI6-5BQBNgP-l5WbfqDSJ1ej8xdpMuuJqbmHeY_xdxpQoNR_Tvb0GT28PNwWTG-LR69asPc</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Tran, Truc T.</creator><creator>Munita, Jose M.</creator><creator>Arias, Cesar A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>201509</creationdate><title>Mechanisms of drug resistance: daptomycin resistance</title><author>Tran, Truc T. ; Munita, Jose M. ; Arias, Cesar A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Bacillus subtilis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Cell Membrane - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Wall - genetics</topic><topic>Cell Wall - metabolism</topic><topic>Daptomycin - pharmacology</topic><topic>daptomycin resistance</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial</topic><topic>Enterococcus</topic><topic>Envelopes</topic><topic>Genetics</topic><topic>Gram-positive bacteria</topic><topic>Gram-Positive Bacteria - drug effects</topic><topic>Gram-Positive Bacteria - genetics</topic><topic>Gram-Positive Bacteria - metabolism</topic><topic>Gram-Positive Bacterial Infections - microbiology</topic><topic>Humans</topic><topic>Membranes</topic><topic>Mutation</topic><topic>Organisms</topic><topic>Pathogens</topic><topic>Physiology</topic><topic>Staphylococcus aureus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Truc T.</creatorcontrib><creatorcontrib>Munita, Jose M.</creatorcontrib><creatorcontrib>Arias, Cesar A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Truc T.</au><au>Munita, Jose M.</au><au>Arias, Cesar A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of drug resistance: daptomycin resistance</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann. N.Y. Acad. Sci</addtitle><date>2015-09</date><risdate>2015</risdate><volume>1354</volume><issue>1</issue><spage>32</spage><epage>53</epage><pages>32-53</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><coden>ANYAA9</coden><abstract>Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram‐positive pathogens, including multidrug‐resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep‐seated infections caused by Gram‐positive organisms. Unfortunately, DAP resistance (DAP‐R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP‐R in Bacillus subtilis and other Gram‐positive bacteria indicate that the genetic pathways of DAP‐R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP‐R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram‐positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram‐positive pathogens and discuss the clinical implications for therapy against these important bacteria.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26495887</pmid><doi>10.1111/nyas.12948</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2015-09, Vol.1354 (1), p.32-53
issn 0077-8923
1749-6632
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4966536
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Anti-Bacterial Agents - pharmacology
Bacillus subtilis
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Cell Membrane - genetics
Cell Membrane - metabolism
Cell Wall - genetics
Cell Wall - metabolism
Daptomycin - pharmacology
daptomycin resistance
Drug resistance
Drug Resistance, Bacterial
Enterococcus
Envelopes
Genetics
Gram-positive bacteria
Gram-Positive Bacteria - drug effects
Gram-Positive Bacteria - genetics
Gram-Positive Bacteria - metabolism
Gram-Positive Bacterial Infections - microbiology
Humans
Membranes
Mutation
Organisms
Pathogens
Physiology
Staphylococcus aureus
title Mechanisms of drug resistance: daptomycin resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20drug%20resistance:%20daptomycin%20resistance&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Tran,%20Truc%20T.&rft.date=2015-09&rft.volume=1354&rft.issue=1&rft.spage=32&rft.epage=53&rft.pages=32-53&rft.issn=0077-8923&rft.eissn=1749-6632&rft.coden=ANYAA9&rft_id=info:doi/10.1111/nyas.12948&rft_dat=%3Cproquest_pubme%3E1770286432%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6268-1f6c75361d270decaad66060c15dca3fd275a9d699ec60f927927906077f5333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1727651455&rft_id=info:pmid/26495887&rfr_iscdi=true