Loading…
Endoscopic detection of cancer with lensless radioluminescence imaging and machine vision
Complete removal of residual tumor tissue during surgical resection improves patient outcomes. However, it is often difficult for surgeons to delineate the tumor beyond its visible boundary. This has led to the development of intraoperative detectors that can image radiotracers accumulated within tu...
Saved in:
Published in: | Scientific reports 2016-08, Vol.6 (1), p.30737-30737, Article 30737 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-b86e4ba2304030f22e31bf4373e30253bd005d165f520203a7ca3cbe47cbccca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-b86e4ba2304030f22e31bf4373e30253bd005d165f520203a7ca3cbe47cbccca3 |
container_end_page | 30737 |
container_issue | 1 |
container_start_page | 30737 |
container_title | Scientific reports |
container_volume | 6 |
creator | Türkcan, Silvan Naczynski, Dominik J. Nolley, Rosalie Sasportas, Laura S. Peehl, Donna M. Pratx, Guillem |
description | Complete removal of residual tumor tissue during surgical resection improves patient outcomes. However, it is often difficult for surgeons to delineate the tumor beyond its visible boundary. This has led to the development of intraoperative detectors that can image radiotracers accumulated within tumors, thus facilitating the removal of residual tumor tissue during surgical procedures. We introduce a beta imaging system that converts the beta radiation from the radiotracer into photons close to the decay origin through a CdWO
4
scintillator and does not use any optical elements. The signal is relayed onto an EMCCD chip through a wound imaging fiber. The sensitivity of the device allows imaging of activity down to 100 nCi and the system has a resolution of at least 500 μm with a field of view of 4.80 × 6.51 mm. Advances in handheld beta cameras have focused on hardware improvements, but we apply machine vision to the recorded images to extract more information. We automatically classify sample regions in human renal cancer tissue
ex-vivo
into tumor or benign tissue based on image features. Machine vision boosts the ability of our system to distinguish tumor from healthy tissue by a factor of 9 ± 3 and can be applied to other beta imaging probes. |
doi_str_mv | 10.1038/srep30737 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4967900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901677145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-b86e4ba2304030f22e31bf4373e30253bd005d165f520203a7ca3cbe47cbccca3</originalsourceid><addsrcrecordid>eNplkc1r3DAQxUVJaUKaQ_-BIMglLWw7-rBlXwolpB8Q6KU55CRkebyrYEsbyU7pf98pmy6bVpcZeD-e3vAYeyPgvQDVfCgZtwqMMi_YiQRdraSS8uhgP2ZnpdwDvUq2WrSv2LE02phWyBN2dx37VHzaBs97nNHPIUWeBu5d9Jj5zzBv-IixjFgKz64PaVymELF4JICHya1DXHMXez45vyGFP4ZCJq_Zy8GNBc-e5im7_Xz94-rr6ub7l29Xn25WvoJmXnVNjbpzUoEGBYOUqEQ3aGUUKpCV6nrK3Yu6GioJEpQz3infoTa-8572U_Zx57tdugl7ijVnN9ptpmj5l00u2OdKDBu7To9Wt7VpAcjg8skgp4cFy2ynQNeNo4uYlmJFA40yum4MoRf_oPdpyZHOs6IFURsjdEXU2x3lcypUz7API8D-6czuOyP2_DD9nvzbEAHvdkAhKa4xH3z5n9tvvPGhtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901677145</pqid></control><display><type>article</type><title>Endoscopic detection of cancer with lensless radioluminescence imaging and machine vision</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Türkcan, Silvan ; Naczynski, Dominik J. ; Nolley, Rosalie ; Sasportas, Laura S. ; Peehl, Donna M. ; Pratx, Guillem</creator><creatorcontrib>Türkcan, Silvan ; Naczynski, Dominik J. ; Nolley, Rosalie ; Sasportas, Laura S. ; Peehl, Donna M. ; Pratx, Guillem</creatorcontrib><description>Complete removal of residual tumor tissue during surgical resection improves patient outcomes. However, it is often difficult for surgeons to delineate the tumor beyond its visible boundary. This has led to the development of intraoperative detectors that can image radiotracers accumulated within tumors, thus facilitating the removal of residual tumor tissue during surgical procedures. We introduce a beta imaging system that converts the beta radiation from the radiotracer into photons close to the decay origin through a CdWO
4
scintillator and does not use any optical elements. The signal is relayed onto an EMCCD chip through a wound imaging fiber. The sensitivity of the device allows imaging of activity down to 100 nCi and the system has a resolution of at least 500 μm with a field of view of 4.80 × 6.51 mm. Advances in handheld beta cameras have focused on hardware improvements, but we apply machine vision to the recorded images to extract more information. We automatically classify sample regions in human renal cancer tissue
ex-vivo
into tumor or benign tissue based on image features. Machine vision boosts the ability of our system to distinguish tumor from healthy tissue by a factor of 9 ± 3 and can be applied to other beta imaging probes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep30737</identifier><identifier>PMID: 27477912</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 59/5 ; 631/67/2321 ; 692/4028/67/2321 ; Benign ; Beta radiation ; Cameras ; Cancer ; Humanities and Social Sciences ; Information processing ; Kidney cancer ; Kidneys ; multidisciplinary ; Photons ; Probes ; Radioactive tracers ; Science ; Tissues ; Tumors ; Vision systems ; Wounds</subject><ispartof>Scientific reports, 2016-08, Vol.6 (1), p.30737-30737, Article 30737</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Aug 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-b86e4ba2304030f22e31bf4373e30253bd005d165f520203a7ca3cbe47cbccca3</citedby><cites>FETCH-LOGICAL-c508t-b86e4ba2304030f22e31bf4373e30253bd005d165f520203a7ca3cbe47cbccca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1901677145/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1901677145?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27477912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Türkcan, Silvan</creatorcontrib><creatorcontrib>Naczynski, Dominik J.</creatorcontrib><creatorcontrib>Nolley, Rosalie</creatorcontrib><creatorcontrib>Sasportas, Laura S.</creatorcontrib><creatorcontrib>Peehl, Donna M.</creatorcontrib><creatorcontrib>Pratx, Guillem</creatorcontrib><title>Endoscopic detection of cancer with lensless radioluminescence imaging and machine vision</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Complete removal of residual tumor tissue during surgical resection improves patient outcomes. However, it is often difficult for surgeons to delineate the tumor beyond its visible boundary. This has led to the development of intraoperative detectors that can image radiotracers accumulated within tumors, thus facilitating the removal of residual tumor tissue during surgical procedures. We introduce a beta imaging system that converts the beta radiation from the radiotracer into photons close to the decay origin through a CdWO
4
scintillator and does not use any optical elements. The signal is relayed onto an EMCCD chip through a wound imaging fiber. The sensitivity of the device allows imaging of activity down to 100 nCi and the system has a resolution of at least 500 μm with a field of view of 4.80 × 6.51 mm. Advances in handheld beta cameras have focused on hardware improvements, but we apply machine vision to the recorded images to extract more information. We automatically classify sample regions in human renal cancer tissue
ex-vivo
into tumor or benign tissue based on image features. Machine vision boosts the ability of our system to distinguish tumor from healthy tissue by a factor of 9 ± 3 and can be applied to other beta imaging probes.</description><subject>13</subject><subject>13/106</subject><subject>59/5</subject><subject>631/67/2321</subject><subject>692/4028/67/2321</subject><subject>Benign</subject><subject>Beta radiation</subject><subject>Cameras</subject><subject>Cancer</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>Kidney cancer</subject><subject>Kidneys</subject><subject>multidisciplinary</subject><subject>Photons</subject><subject>Probes</subject><subject>Radioactive tracers</subject><subject>Science</subject><subject>Tissues</subject><subject>Tumors</subject><subject>Vision systems</subject><subject>Wounds</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkc1r3DAQxUVJaUKaQ_-BIMglLWw7-rBlXwolpB8Q6KU55CRkebyrYEsbyU7pf98pmy6bVpcZeD-e3vAYeyPgvQDVfCgZtwqMMi_YiQRdraSS8uhgP2ZnpdwDvUq2WrSv2LE02phWyBN2dx37VHzaBs97nNHPIUWeBu5d9Jj5zzBv-IixjFgKz64PaVymELF4JICHya1DXHMXez45vyGFP4ZCJq_Zy8GNBc-e5im7_Xz94-rr6ub7l29Xn25WvoJmXnVNjbpzUoEGBYOUqEQ3aGUUKpCV6nrK3Yu6GioJEpQz3infoTa-8572U_Zx57tdugl7ijVnN9ptpmj5l00u2OdKDBu7To9Wt7VpAcjg8skgp4cFy2ynQNeNo4uYlmJFA40yum4MoRf_oPdpyZHOs6IFURsjdEXU2x3lcypUz7API8D-6czuOyP2_DD9nvzbEAHvdkAhKa4xH3z5n9tvvPGhtA</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Türkcan, Silvan</creator><creator>Naczynski, Dominik J.</creator><creator>Nolley, Rosalie</creator><creator>Sasportas, Laura S.</creator><creator>Peehl, Donna M.</creator><creator>Pratx, Guillem</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160801</creationdate><title>Endoscopic detection of cancer with lensless radioluminescence imaging and machine vision</title><author>Türkcan, Silvan ; Naczynski, Dominik J. ; Nolley, Rosalie ; Sasportas, Laura S. ; Peehl, Donna M. ; Pratx, Guillem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-b86e4ba2304030f22e31bf4373e30253bd005d165f520203a7ca3cbe47cbccca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13</topic><topic>13/106</topic><topic>59/5</topic><topic>631/67/2321</topic><topic>692/4028/67/2321</topic><topic>Benign</topic><topic>Beta radiation</topic><topic>Cameras</topic><topic>Cancer</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>Kidney cancer</topic><topic>Kidneys</topic><topic>multidisciplinary</topic><topic>Photons</topic><topic>Probes</topic><topic>Radioactive tracers</topic><topic>Science</topic><topic>Tissues</topic><topic>Tumors</topic><topic>Vision systems</topic><topic>Wounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Türkcan, Silvan</creatorcontrib><creatorcontrib>Naczynski, Dominik J.</creatorcontrib><creatorcontrib>Nolley, Rosalie</creatorcontrib><creatorcontrib>Sasportas, Laura S.</creatorcontrib><creatorcontrib>Peehl, Donna M.</creatorcontrib><creatorcontrib>Pratx, Guillem</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Türkcan, Silvan</au><au>Naczynski, Dominik J.</au><au>Nolley, Rosalie</au><au>Sasportas, Laura S.</au><au>Peehl, Donna M.</au><au>Pratx, Guillem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endoscopic detection of cancer with lensless radioluminescence imaging and machine vision</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>30737</spage><epage>30737</epage><pages>30737-30737</pages><artnum>30737</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Complete removal of residual tumor tissue during surgical resection improves patient outcomes. However, it is often difficult for surgeons to delineate the tumor beyond its visible boundary. This has led to the development of intraoperative detectors that can image radiotracers accumulated within tumors, thus facilitating the removal of residual tumor tissue during surgical procedures. We introduce a beta imaging system that converts the beta radiation from the radiotracer into photons close to the decay origin through a CdWO
4
scintillator and does not use any optical elements. The signal is relayed onto an EMCCD chip through a wound imaging fiber. The sensitivity of the device allows imaging of activity down to 100 nCi and the system has a resolution of at least 500 μm with a field of view of 4.80 × 6.51 mm. Advances in handheld beta cameras have focused on hardware improvements, but we apply machine vision to the recorded images to extract more information. We automatically classify sample regions in human renal cancer tissue
ex-vivo
into tumor or benign tissue based on image features. Machine vision boosts the ability of our system to distinguish tumor from healthy tissue by a factor of 9 ± 3 and can be applied to other beta imaging probes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27477912</pmid><doi>10.1038/srep30737</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-08, Vol.6 (1), p.30737-30737, Article 30737 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4967900 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 13/106 59/5 631/67/2321 692/4028/67/2321 Benign Beta radiation Cameras Cancer Humanities and Social Sciences Information processing Kidney cancer Kidneys multidisciplinary Photons Probes Radioactive tracers Science Tissues Tumors Vision systems Wounds |
title | Endoscopic detection of cancer with lensless radioluminescence imaging and machine vision |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endoscopic%20detection%20of%20cancer%20with%20lensless%20radioluminescence%20imaging%20and%20machine%20vision&rft.jtitle=Scientific%20reports&rft.au=T%C3%BCrkcan,%20Silvan&rft.date=2016-08-01&rft.volume=6&rft.issue=1&rft.spage=30737&rft.epage=30737&rft.pages=30737-30737&rft.artnum=30737&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep30737&rft_dat=%3Cproquest_pubme%3E1901677145%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-b86e4ba2304030f22e31bf4373e30253bd005d165f520203a7ca3cbe47cbccca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1901677145&rft_id=info:pmid/27477912&rfr_iscdi=true |