Loading…

Regulation of mitotic spindle orientation: an integrated view

Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified th...

Full description

Saved in:
Bibliographic Details
Published in:EMBO reports 2016-08, Vol.17 (8), p.1106-1130
Main Authors: di Pietro, Florencia, Echard, Arnaud, Morin, Xavier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533
cites cdi_FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533
container_end_page 1130
container_issue 8
container_start_page 1106
container_title EMBO reports
container_volume 17
creator di Pietro, Florencia
Echard, Arnaud
Morin, Xavier
description Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN‐independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation. Graphical Abstract Mitotic spindle orientation is important for fate decisions, epithelial maintenance, and tissue morphogenesis. This review highlights the dynamic nature of spindle assembly and discusses the molecular regulation of its localization and external signals that control its orientation.
doi_str_mv 10.15252/embr.201642292
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4967962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4133664891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxYMotlaffZMBX3yZNrn5LljQtV2FqlCUii8hM5NdU2eSNZlp7X_vbGddVkF8yoX7OyfnchB6SvAh4cDhyHVVOgRMBAPQcA_tEyZ0SYlU9zczAPmyhx7lfIUx5lqqh2gPJKMAiu2jlxduObS29zEUcVF0vo-9r4u88qFpXRGTd6G_Wx8XNhQ-9G6ZbO-a4tq7m8fowcK22T3ZvAfo89npp9nb8vzj_N3s1XlZCyKhtNCwuia24Vo4rURNFR8jE8p1hQUjmDHGwTYgLeEVdspKTiWFBWdVBZzSA3Qy-a6GqnNNPWZKtjWr5Dubbk203vy5Cf6bWcZrw7SQWsBo8GJjkOKPweXedD7Xrm1tcHHIhiisBBZasBF9_hd6FYcUxvPWlBwxrdbU0UTVKeac3GIbhmBzV41ZV2O21YyKZ7s3bPnfXYzA8QTc-Nbd_s_PnL5_fbHrjidxHnVh6dJO6n8GKieJz737uf3Ppu9GSCq5ufwwN3B2-WY2_6qMpL8AInK5MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807860984</pqid></control><display><type>article</type><title>Regulation of mitotic spindle orientation: an integrated view</title><source>PubMed Central</source><creator>di Pietro, Florencia ; Echard, Arnaud ; Morin, Xavier</creator><creatorcontrib>di Pietro, Florencia ; Echard, Arnaud ; Morin, Xavier</creatorcontrib><description>Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN‐independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation. Graphical Abstract Mitotic spindle orientation is important for fate decisions, epithelial maintenance, and tissue morphogenesis. This review highlights the dynamic nature of spindle assembly and discusses the molecular regulation of its localization and external signals that control its orientation.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201642292</identifier><identifier>PMID: 27432284</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>actin cortex ; Actins - metabolism ; Animals ; astral microtubules ; Biochemistry ; Biomechanical Phenomena ; Biophysics ; Cell Cycle ; Cell division ; cell geometry ; Cellular biology ; Dyneins - metabolism ; EMBO06 ; Gene Expression Regulation ; Genetics ; Humans ; Microtubules - metabolism ; Mitosis ; Multiprotein Complexes - metabolism ; Nuclear Matrix-Associated Proteins - metabolism ; NuMA ; Protein Binding ; Protein Stability ; Protein Transport ; Review ; Reviews ; Signal Transduction ; Spindle Apparatus - metabolism ; spindle orientation</subject><ispartof>EMBO reports, 2016-08, Vol.17 (8), p.1106-1130</ispartof><rights>The Authors 2016</rights><rights>2016 The Authors</rights><rights>2016 The Authors.</rights><rights>2016 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533</citedby><cites>FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533</cites><orcidid>0000-0001-9999-0355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967962/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967962/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27432284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>di Pietro, Florencia</creatorcontrib><creatorcontrib>Echard, Arnaud</creatorcontrib><creatorcontrib>Morin, Xavier</creatorcontrib><title>Regulation of mitotic spindle orientation: an integrated view</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO rep</addtitle><description>Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN‐independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation. Graphical Abstract Mitotic spindle orientation is important for fate decisions, epithelial maintenance, and tissue morphogenesis. This review highlights the dynamic nature of spindle assembly and discusses the molecular regulation of its localization and external signals that control its orientation.</description><subject>actin cortex</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>astral microtubules</subject><subject>Biochemistry</subject><subject>Biomechanical Phenomena</subject><subject>Biophysics</subject><subject>Cell Cycle</subject><subject>Cell division</subject><subject>cell geometry</subject><subject>Cellular biology</subject><subject>Dyneins - metabolism</subject><subject>EMBO06</subject><subject>Gene Expression Regulation</subject><subject>Genetics</subject><subject>Humans</subject><subject>Microtubules - metabolism</subject><subject>Mitosis</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Nuclear Matrix-Associated Proteins - metabolism</subject><subject>NuMA</subject><subject>Protein Binding</subject><subject>Protein Stability</subject><subject>Protein Transport</subject><subject>Review</subject><subject>Reviews</subject><subject>Signal Transduction</subject><subject>Spindle Apparatus - metabolism</subject><subject>spindle orientation</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkd1rFDEUxYMotlaffZMBX3yZNrn5LljQtV2FqlCUii8hM5NdU2eSNZlp7X_vbGddVkF8yoX7OyfnchB6SvAh4cDhyHVVOgRMBAPQcA_tEyZ0SYlU9zczAPmyhx7lfIUx5lqqh2gPJKMAiu2jlxduObS29zEUcVF0vo-9r4u88qFpXRGTd6G_Wx8XNhQ-9G6ZbO-a4tq7m8fowcK22T3ZvAfo89npp9nb8vzj_N3s1XlZCyKhtNCwuia24Vo4rURNFR8jE8p1hQUjmDHGwTYgLeEVdspKTiWFBWdVBZzSA3Qy-a6GqnNNPWZKtjWr5Dubbk203vy5Cf6bWcZrw7SQWsBo8GJjkOKPweXedD7Xrm1tcHHIhiisBBZasBF9_hd6FYcUxvPWlBwxrdbU0UTVKeac3GIbhmBzV41ZV2O21YyKZ7s3bPnfXYzA8QTc-Nbd_s_PnL5_fbHrjidxHnVh6dJO6n8GKieJz737uf3Ppu9GSCq5ufwwN3B2-WY2_6qMpL8AInK5MA</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>di Pietro, Florencia</creator><creator>Echard, Arnaud</creator><creator>Morin, Xavier</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9999-0355</orcidid></search><sort><creationdate>201608</creationdate><title>Regulation of mitotic spindle orientation: an integrated view</title><author>di Pietro, Florencia ; Echard, Arnaud ; Morin, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>actin cortex</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>astral microtubules</topic><topic>Biochemistry</topic><topic>Biomechanical Phenomena</topic><topic>Biophysics</topic><topic>Cell Cycle</topic><topic>Cell division</topic><topic>cell geometry</topic><topic>Cellular biology</topic><topic>Dyneins - metabolism</topic><topic>EMBO06</topic><topic>Gene Expression Regulation</topic><topic>Genetics</topic><topic>Humans</topic><topic>Microtubules - metabolism</topic><topic>Mitosis</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Nuclear Matrix-Associated Proteins - metabolism</topic><topic>NuMA</topic><topic>Protein Binding</topic><topic>Protein Stability</topic><topic>Protein Transport</topic><topic>Review</topic><topic>Reviews</topic><topic>Signal Transduction</topic><topic>Spindle Apparatus - metabolism</topic><topic>spindle orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>di Pietro, Florencia</creatorcontrib><creatorcontrib>Echard, Arnaud</creatorcontrib><creatorcontrib>Morin, Xavier</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>di Pietro, Florencia</au><au>Echard, Arnaud</au><au>Morin, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of mitotic spindle orientation: an integrated view</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO rep</addtitle><date>2016-08</date><risdate>2016</risdate><volume>17</volume><issue>8</issue><spage>1106</spage><epage>1130</epage><pages>1106-1130</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><coden>ERMEAX</coden><abstract>Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN‐independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation. Graphical Abstract Mitotic spindle orientation is important for fate decisions, epithelial maintenance, and tissue morphogenesis. This review highlights the dynamic nature of spindle assembly and discusses the molecular regulation of its localization and external signals that control its orientation.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>27432284</pmid><doi>10.15252/embr.201642292</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-9999-0355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2016-08, Vol.17 (8), p.1106-1130
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4967962
source PubMed Central
subjects actin cortex
Actins - metabolism
Animals
astral microtubules
Biochemistry
Biomechanical Phenomena
Biophysics
Cell Cycle
Cell division
cell geometry
Cellular biology
Dyneins - metabolism
EMBO06
Gene Expression Regulation
Genetics
Humans
Microtubules - metabolism
Mitosis
Multiprotein Complexes - metabolism
Nuclear Matrix-Associated Proteins - metabolism
NuMA
Protein Binding
Protein Stability
Protein Transport
Review
Reviews
Signal Transduction
Spindle Apparatus - metabolism
spindle orientation
title Regulation of mitotic spindle orientation: an integrated view
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20mitotic%20spindle%20orientation:%20an%20integrated%20view&rft.jtitle=EMBO%20reports&rft.au=di%20Pietro,%20Florencia&rft.date=2016-08&rft.volume=17&rft.issue=8&rft.spage=1106&rft.epage=1130&rft.pages=1106-1130&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.15252/embr.201642292&rft_dat=%3Cproquest_pubme%3E4133664891%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1807860984&rft_id=info:pmid/27432284&rfr_iscdi=true