Loading…
Regulation of mitotic spindle orientation: an integrated view
Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified th...
Saved in:
Published in: | EMBO reports 2016-08, Vol.17 (8), p.1106-1130 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533 |
---|---|
cites | cdi_FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533 |
container_end_page | 1130 |
container_issue | 8 |
container_start_page | 1106 |
container_title | EMBO reports |
container_volume | 17 |
creator | di Pietro, Florencia Echard, Arnaud Morin, Xavier |
description | Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN‐independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.
Graphical Abstract
Mitotic spindle orientation is important for fate decisions, epithelial maintenance, and tissue morphogenesis. This review highlights the dynamic nature of spindle assembly and discusses the molecular regulation of its localization and external signals that control its orientation. |
doi_str_mv | 10.15252/embr.201642292 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4967962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4133664891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxYMotlaffZMBX3yZNrn5LljQtV2FqlCUii8hM5NdU2eSNZlp7X_vbGddVkF8yoX7OyfnchB6SvAh4cDhyHVVOgRMBAPQcA_tEyZ0SYlU9zczAPmyhx7lfIUx5lqqh2gPJKMAiu2jlxduObS29zEUcVF0vo-9r4u88qFpXRGTd6G_Wx8XNhQ-9G6ZbO-a4tq7m8fowcK22T3ZvAfo89npp9nb8vzj_N3s1XlZCyKhtNCwuia24Vo4rURNFR8jE8p1hQUjmDHGwTYgLeEVdspKTiWFBWdVBZzSA3Qy-a6GqnNNPWZKtjWr5Dubbk203vy5Cf6bWcZrw7SQWsBo8GJjkOKPweXedD7Xrm1tcHHIhiisBBZasBF9_hd6FYcUxvPWlBwxrdbU0UTVKeac3GIbhmBzV41ZV2O21YyKZ7s3bPnfXYzA8QTc-Nbd_s_PnL5_fbHrjidxHnVh6dJO6n8GKieJz737uf3Ppu9GSCq5ufwwN3B2-WY2_6qMpL8AInK5MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807860984</pqid></control><display><type>article</type><title>Regulation of mitotic spindle orientation: an integrated view</title><source>PubMed Central</source><creator>di Pietro, Florencia ; Echard, Arnaud ; Morin, Xavier</creator><creatorcontrib>di Pietro, Florencia ; Echard, Arnaud ; Morin, Xavier</creatorcontrib><description>Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN‐independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.
Graphical Abstract
Mitotic spindle orientation is important for fate decisions, epithelial maintenance, and tissue morphogenesis. This review highlights the dynamic nature of spindle assembly and discusses the molecular regulation of its localization and external signals that control its orientation.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.201642292</identifier><identifier>PMID: 27432284</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>actin cortex ; Actins - metabolism ; Animals ; astral microtubules ; Biochemistry ; Biomechanical Phenomena ; Biophysics ; Cell Cycle ; Cell division ; cell geometry ; Cellular biology ; Dyneins - metabolism ; EMBO06 ; Gene Expression Regulation ; Genetics ; Humans ; Microtubules - metabolism ; Mitosis ; Multiprotein Complexes - metabolism ; Nuclear Matrix-Associated Proteins - metabolism ; NuMA ; Protein Binding ; Protein Stability ; Protein Transport ; Review ; Reviews ; Signal Transduction ; Spindle Apparatus - metabolism ; spindle orientation</subject><ispartof>EMBO reports, 2016-08, Vol.17 (8), p.1106-1130</ispartof><rights>The Authors 2016</rights><rights>2016 The Authors</rights><rights>2016 The Authors.</rights><rights>2016 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533</citedby><cites>FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533</cites><orcidid>0000-0001-9999-0355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967962/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967962/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27432284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>di Pietro, Florencia</creatorcontrib><creatorcontrib>Echard, Arnaud</creatorcontrib><creatorcontrib>Morin, Xavier</creatorcontrib><title>Regulation of mitotic spindle orientation: an integrated view</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO rep</addtitle><description>Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN‐independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.
Graphical Abstract
Mitotic spindle orientation is important for fate decisions, epithelial maintenance, and tissue morphogenesis. This review highlights the dynamic nature of spindle assembly and discusses the molecular regulation of its localization and external signals that control its orientation.</description><subject>actin cortex</subject><subject>Actins - metabolism</subject><subject>Animals</subject><subject>astral microtubules</subject><subject>Biochemistry</subject><subject>Biomechanical Phenomena</subject><subject>Biophysics</subject><subject>Cell Cycle</subject><subject>Cell division</subject><subject>cell geometry</subject><subject>Cellular biology</subject><subject>Dyneins - metabolism</subject><subject>EMBO06</subject><subject>Gene Expression Regulation</subject><subject>Genetics</subject><subject>Humans</subject><subject>Microtubules - metabolism</subject><subject>Mitosis</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Nuclear Matrix-Associated Proteins - metabolism</subject><subject>NuMA</subject><subject>Protein Binding</subject><subject>Protein Stability</subject><subject>Protein Transport</subject><subject>Review</subject><subject>Reviews</subject><subject>Signal Transduction</subject><subject>Spindle Apparatus - metabolism</subject><subject>spindle orientation</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkd1rFDEUxYMotlaffZMBX3yZNrn5LljQtV2FqlCUii8hM5NdU2eSNZlp7X_vbGddVkF8yoX7OyfnchB6SvAh4cDhyHVVOgRMBAPQcA_tEyZ0SYlU9zczAPmyhx7lfIUx5lqqh2gPJKMAiu2jlxduObS29zEUcVF0vo-9r4u88qFpXRGTd6G_Wx8XNhQ-9G6ZbO-a4tq7m8fowcK22T3ZvAfo89npp9nb8vzj_N3s1XlZCyKhtNCwuia24Vo4rURNFR8jE8p1hQUjmDHGwTYgLeEVdspKTiWFBWdVBZzSA3Qy-a6GqnNNPWZKtjWr5Dubbk203vy5Cf6bWcZrw7SQWsBo8GJjkOKPweXedD7Xrm1tcHHIhiisBBZasBF9_hd6FYcUxvPWlBwxrdbU0UTVKeac3GIbhmBzV41ZV2O21YyKZ7s3bPnfXYzA8QTc-Nbd_s_PnL5_fbHrjidxHnVh6dJO6n8GKieJz737uf3Ppu9GSCq5ufwwN3B2-WY2_6qMpL8AInK5MA</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>di Pietro, Florencia</creator><creator>Echard, Arnaud</creator><creator>Morin, Xavier</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9999-0355</orcidid></search><sort><creationdate>201608</creationdate><title>Regulation of mitotic spindle orientation: an integrated view</title><author>di Pietro, Florencia ; Echard, Arnaud ; Morin, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>actin cortex</topic><topic>Actins - metabolism</topic><topic>Animals</topic><topic>astral microtubules</topic><topic>Biochemistry</topic><topic>Biomechanical Phenomena</topic><topic>Biophysics</topic><topic>Cell Cycle</topic><topic>Cell division</topic><topic>cell geometry</topic><topic>Cellular biology</topic><topic>Dyneins - metabolism</topic><topic>EMBO06</topic><topic>Gene Expression Regulation</topic><topic>Genetics</topic><topic>Humans</topic><topic>Microtubules - metabolism</topic><topic>Mitosis</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Nuclear Matrix-Associated Proteins - metabolism</topic><topic>NuMA</topic><topic>Protein Binding</topic><topic>Protein Stability</topic><topic>Protein Transport</topic><topic>Review</topic><topic>Reviews</topic><topic>Signal Transduction</topic><topic>Spindle Apparatus - metabolism</topic><topic>spindle orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>di Pietro, Florencia</creatorcontrib><creatorcontrib>Echard, Arnaud</creatorcontrib><creatorcontrib>Morin, Xavier</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>di Pietro, Florencia</au><au>Echard, Arnaud</au><au>Morin, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of mitotic spindle orientation: an integrated view</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO rep</addtitle><date>2016-08</date><risdate>2016</risdate><volume>17</volume><issue>8</issue><spage>1106</spage><epage>1130</epage><pages>1106-1130</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><coden>ERMEAX</coden><abstract>Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN‐independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.
Graphical Abstract
Mitotic spindle orientation is important for fate decisions, epithelial maintenance, and tissue morphogenesis. This review highlights the dynamic nature of spindle assembly and discusses the molecular regulation of its localization and external signals that control its orientation.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>27432284</pmid><doi>10.15252/embr.201642292</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-9999-0355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2016-08, Vol.17 (8), p.1106-1130 |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4967962 |
source | PubMed Central |
subjects | actin cortex Actins - metabolism Animals astral microtubules Biochemistry Biomechanical Phenomena Biophysics Cell Cycle Cell division cell geometry Cellular biology Dyneins - metabolism EMBO06 Gene Expression Regulation Genetics Humans Microtubules - metabolism Mitosis Multiprotein Complexes - metabolism Nuclear Matrix-Associated Proteins - metabolism NuMA Protein Binding Protein Stability Protein Transport Review Reviews Signal Transduction Spindle Apparatus - metabolism spindle orientation |
title | Regulation of mitotic spindle orientation: an integrated view |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20mitotic%20spindle%20orientation:%20an%20integrated%20view&rft.jtitle=EMBO%20reports&rft.au=di%20Pietro,%20Florencia&rft.date=2016-08&rft.volume=17&rft.issue=8&rft.spage=1106&rft.epage=1130&rft.pages=1106-1130&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.15252/embr.201642292&rft_dat=%3Cproquest_pubme%3E4133664891%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6172-a2d4cc1ad596e986c3850161359b0641044452ad27a15b0e8a753732f54bb2533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1807860984&rft_id=info:pmid/27432284&rfr_iscdi=true |