Loading…
Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants
The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing...
Saved in:
Published in: | BioMed research international 2016-01, Vol.2016 (2016), p.1-15 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c559t-a57986e6f9f0d1b548255de5652ddb7b77ae2cbd6d77c826fc172136788cf5983 |
container_end_page | 15 |
container_issue | 2016 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2016 |
creator | Arcay, Bernardino Boveda, Carmen Rey, Alberto Castro, Alfonso Sanjurjo, Pedro |
description | The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium). |
doi_str_mv | 10.1155/2016/8058245 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4967987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A520715740</galeid><sourcerecordid>A520715740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-a57986e6f9f0d1b548255de5652ddb7b77ae2cbd6d77c826fc172136788cf5983</originalsourceid><addsrcrecordid>eNqN0s9rFDEUB_BBFFtqb54l4EXQtXmZya-LsKzWFooVXb2GbJLZTZlNpsmMS_vXm2XXtXpqLgnkw_clj1dVLwG_B6D0jGBgZwJTQRr6pDomNTQTBg08PZzr-qg6zfkGlyWAYcmeV0eEU-C4kcfV8ny8v79Ds27Mg0s-LNG07zvvLBoi-nZ9iT66wZnBx4B8QBeu80Z3aL6KSRtv0GyOvhsdMtr4YYU0-uI26GuKfcxF6WDRT528DkN-UT1rdZfd6X4_qX6cf5rPLiZX158vZ9OriaFUDhNNuRTMsVa22MKCNoJQah1llFi74AvOtSNmYZnl3AjCWgOcQM24EKalUtQn1Yddbj8u1s4aF4akO9Unv9bpTkXt1b83wa_UMv5SjWSlNC8Bb_YBKd6OLg9q7bNxXaeDi2NWIEBCw0vtx1CoMWY1LfT1f_QmjimUThSFuaCcQ_NXLXXnlA9tLE8021A1pQRzoLzBRb3bKZNizsm1h98BVtupUNupUPupKPzVw44c8J8ZKODtDqx8sHrjHxnninGtfqClkETWvwF1NMY7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807857714</pqid></control><display><type>article</type><title>Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Arcay, Bernardino ; Boveda, Carmen ; Rey, Alberto ; Castro, Alfonso ; Sanjurjo, Pedro</creator><contributor>Suzuki, Kenji</contributor><creatorcontrib>Arcay, Bernardino ; Boveda, Carmen ; Rey, Alberto ; Castro, Alfonso ; Sanjurjo, Pedro ; Suzuki, Kenji</creatorcontrib><description>The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium).</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2016/8058245</identifier><identifier>PMID: 27517049</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Biomedical research ; Classification ; Clustering ; CT imaging ; Diagnostic imaging ; Fuzzy Logic ; Humans ; Lung Neoplasms - diagnostic imaging ; Lungs ; Medical imaging ; Medical imaging equipment ; Morphology ; Mortality ; Neighborhoods ; Pattern Recognition, Automated - methods ; Radiography, Thoracic - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Social aspects ; Solitary Pulmonary Nodule - diagnostic imaging ; Tomography, Spiral Computed - methods</subject><ispartof>BioMed research international, 2016-01, Vol.2016 (2016), p.1-15</ispartof><rights>Copyright © 2016 Alfonso Castro et al.</rights><rights>COPYRIGHT 2016 John Wiley & Sons, Inc.</rights><rights>Copyright © 2016 Alfonso Castro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 Alfonso Castro et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c559t-a57986e6f9f0d1b548255de5652ddb7b77ae2cbd6d77c826fc172136788cf5983</cites><orcidid>0000-0003-0470-290X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1807857714/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1807857714?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27517049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Suzuki, Kenji</contributor><creatorcontrib>Arcay, Bernardino</creatorcontrib><creatorcontrib>Boveda, Carmen</creatorcontrib><creatorcontrib>Rey, Alberto</creatorcontrib><creatorcontrib>Castro, Alfonso</creatorcontrib><creatorcontrib>Sanjurjo, Pedro</creatorcontrib><title>Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium).</description><subject>Algorithms</subject><subject>Biomedical research</subject><subject>Classification</subject><subject>Clustering</subject><subject>CT imaging</subject><subject>Diagnostic imaging</subject><subject>Fuzzy Logic</subject><subject>Humans</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lungs</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Morphology</subject><subject>Mortality</subject><subject>Neighborhoods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiography, Thoracic - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Social aspects</subject><subject>Solitary Pulmonary Nodule - diagnostic imaging</subject><subject>Tomography, Spiral Computed - methods</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqN0s9rFDEUB_BBFFtqb54l4EXQtXmZya-LsKzWFooVXb2GbJLZTZlNpsmMS_vXm2XXtXpqLgnkw_clj1dVLwG_B6D0jGBgZwJTQRr6pDomNTQTBg08PZzr-qg6zfkGlyWAYcmeV0eEU-C4kcfV8ny8v79Ds27Mg0s-LNG07zvvLBoi-nZ9iT66wZnBx4B8QBeu80Z3aL6KSRtv0GyOvhsdMtr4YYU0-uI26GuKfcxF6WDRT528DkN-UT1rdZfd6X4_qX6cf5rPLiZX158vZ9OriaFUDhNNuRTMsVa22MKCNoJQah1llFi74AvOtSNmYZnl3AjCWgOcQM24EKalUtQn1Yddbj8u1s4aF4akO9Unv9bpTkXt1b83wa_UMv5SjWSlNC8Bb_YBKd6OLg9q7bNxXaeDi2NWIEBCw0vtx1CoMWY1LfT1f_QmjimUThSFuaCcQ_NXLXXnlA9tLE8021A1pQRzoLzBRb3bKZNizsm1h98BVtupUNupUPupKPzVw44c8J8ZKODtDqx8sHrjHxnninGtfqClkETWvwF1NMY7</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Arcay, Bernardino</creator><creator>Boveda, Carmen</creator><creator>Rey, Alberto</creator><creator>Castro, Alfonso</creator><creator>Sanjurjo, Pedro</creator><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0470-290X</orcidid></search><sort><creationdate>20160101</creationdate><title>Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants</title><author>Arcay, Bernardino ; Boveda, Carmen ; Rey, Alberto ; Castro, Alfonso ; Sanjurjo, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-a57986e6f9f0d1b548255de5652ddb7b77ae2cbd6d77c826fc172136788cf5983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biomedical research</topic><topic>Classification</topic><topic>Clustering</topic><topic>CT imaging</topic><topic>Diagnostic imaging</topic><topic>Fuzzy Logic</topic><topic>Humans</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lungs</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Morphology</topic><topic>Mortality</topic><topic>Neighborhoods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiography, Thoracic - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Social aspects</topic><topic>Solitary Pulmonary Nodule - diagnostic imaging</topic><topic>Tomography, Spiral Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcay, Bernardino</creatorcontrib><creatorcontrib>Boveda, Carmen</creatorcontrib><creatorcontrib>Rey, Alberto</creatorcontrib><creatorcontrib>Castro, Alfonso</creatorcontrib><creatorcontrib>Sanjurjo, Pedro</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arcay, Bernardino</au><au>Boveda, Carmen</au><au>Rey, Alberto</au><au>Castro, Alfonso</au><au>Sanjurjo, Pedro</au><au>Suzuki, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium).</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27517049</pmid><doi>10.1155/2016/8058245</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0470-290X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2016-01, Vol.2016 (2016), p.1-15 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4967987 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Algorithms Biomedical research Classification Clustering CT imaging Diagnostic imaging Fuzzy Logic Humans Lung Neoplasms - diagnostic imaging Lungs Medical imaging Medical imaging equipment Morphology Mortality Neighborhoods Pattern Recognition, Automated - methods Radiography, Thoracic - methods Reproducibility of Results Sensitivity and Specificity Social aspects Solitary Pulmonary Nodule - diagnostic imaging Tomography, Spiral Computed - methods |
title | Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Clustering%20Applied%20to%20ROI%20Detection%20in%20Helical%20Thoracic%20CT%20Scans%20with%20a%20New%20Proposal%20and%20Variants&rft.jtitle=BioMed%20research%20international&rft.au=Arcay,%20Bernardino&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2016/8058245&rft_dat=%3Cgale_pubme%3EA520715740%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-a57986e6f9f0d1b548255de5652ddb7b77ae2cbd6d77c826fc172136788cf5983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1807857714&rft_id=info:pmid/27517049&rft_galeid=A520715740&rfr_iscdi=true |