Loading…

Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants

The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2016-01, Vol.2016 (2016), p.1-15
Main Authors: Arcay, Bernardino, Boveda, Carmen, Rey, Alberto, Castro, Alfonso, Sanjurjo, Pedro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c559t-a57986e6f9f0d1b548255de5652ddb7b77ae2cbd6d77c826fc172136788cf5983
container_end_page 15
container_issue 2016
container_start_page 1
container_title BioMed research international
container_volume 2016
creator Arcay, Bernardino
Boveda, Carmen
Rey, Alberto
Castro, Alfonso
Sanjurjo, Pedro
description The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium).
doi_str_mv 10.1155/2016/8058245
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4967987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A520715740</galeid><sourcerecordid>A520715740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-a57986e6f9f0d1b548255de5652ddb7b77ae2cbd6d77c826fc172136788cf5983</originalsourceid><addsrcrecordid>eNqN0s9rFDEUB_BBFFtqb54l4EXQtXmZya-LsKzWFooVXb2GbJLZTZlNpsmMS_vXm2XXtXpqLgnkw_clj1dVLwG_B6D0jGBgZwJTQRr6pDomNTQTBg08PZzr-qg6zfkGlyWAYcmeV0eEU-C4kcfV8ny8v79Ds27Mg0s-LNG07zvvLBoi-nZ9iT66wZnBx4B8QBeu80Z3aL6KSRtv0GyOvhsdMtr4YYU0-uI26GuKfcxF6WDRT528DkN-UT1rdZfd6X4_qX6cf5rPLiZX158vZ9OriaFUDhNNuRTMsVa22MKCNoJQah1llFi74AvOtSNmYZnl3AjCWgOcQM24EKalUtQn1Yddbj8u1s4aF4akO9Unv9bpTkXt1b83wa_UMv5SjWSlNC8Bb_YBKd6OLg9q7bNxXaeDi2NWIEBCw0vtx1CoMWY1LfT1f_QmjimUThSFuaCcQ_NXLXXnlA9tLE8021A1pQRzoLzBRb3bKZNizsm1h98BVtupUNupUPupKPzVw44c8J8ZKODtDqx8sHrjHxnninGtfqClkETWvwF1NMY7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807857714</pqid></control><display><type>article</type><title>Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Arcay, Bernardino ; Boveda, Carmen ; Rey, Alberto ; Castro, Alfonso ; Sanjurjo, Pedro</creator><contributor>Suzuki, Kenji</contributor><creatorcontrib>Arcay, Bernardino ; Boveda, Carmen ; Rey, Alberto ; Castro, Alfonso ; Sanjurjo, Pedro ; Suzuki, Kenji</creatorcontrib><description>The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium).</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2016/8058245</identifier><identifier>PMID: 27517049</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Biomedical research ; Classification ; Clustering ; CT imaging ; Diagnostic imaging ; Fuzzy Logic ; Humans ; Lung Neoplasms - diagnostic imaging ; Lungs ; Medical imaging ; Medical imaging equipment ; Morphology ; Mortality ; Neighborhoods ; Pattern Recognition, Automated - methods ; Radiography, Thoracic - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Social aspects ; Solitary Pulmonary Nodule - diagnostic imaging ; Tomography, Spiral Computed - methods</subject><ispartof>BioMed research international, 2016-01, Vol.2016 (2016), p.1-15</ispartof><rights>Copyright © 2016 Alfonso Castro et al.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2016 Alfonso Castro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 Alfonso Castro et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c559t-a57986e6f9f0d1b548255de5652ddb7b77ae2cbd6d77c826fc172136788cf5983</cites><orcidid>0000-0003-0470-290X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1807857714/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1807857714?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27517049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Suzuki, Kenji</contributor><creatorcontrib>Arcay, Bernardino</creatorcontrib><creatorcontrib>Boveda, Carmen</creatorcontrib><creatorcontrib>Rey, Alberto</creatorcontrib><creatorcontrib>Castro, Alfonso</creatorcontrib><creatorcontrib>Sanjurjo, Pedro</creatorcontrib><title>Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium).</description><subject>Algorithms</subject><subject>Biomedical research</subject><subject>Classification</subject><subject>Clustering</subject><subject>CT imaging</subject><subject>Diagnostic imaging</subject><subject>Fuzzy Logic</subject><subject>Humans</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lungs</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Morphology</subject><subject>Mortality</subject><subject>Neighborhoods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Radiography, Thoracic - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Social aspects</subject><subject>Solitary Pulmonary Nodule - diagnostic imaging</subject><subject>Tomography, Spiral Computed - methods</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqN0s9rFDEUB_BBFFtqb54l4EXQtXmZya-LsKzWFooVXb2GbJLZTZlNpsmMS_vXm2XXtXpqLgnkw_clj1dVLwG_B6D0jGBgZwJTQRr6pDomNTQTBg08PZzr-qg6zfkGlyWAYcmeV0eEU-C4kcfV8ny8v79Ds27Mg0s-LNG07zvvLBoi-nZ9iT66wZnBx4B8QBeu80Z3aL6KSRtv0GyOvhsdMtr4YYU0-uI26GuKfcxF6WDRT528DkN-UT1rdZfd6X4_qX6cf5rPLiZX158vZ9OriaFUDhNNuRTMsVa22MKCNoJQah1llFi74AvOtSNmYZnl3AjCWgOcQM24EKalUtQn1Yddbj8u1s4aF4akO9Unv9bpTkXt1b83wa_UMv5SjWSlNC8Bb_YBKd6OLg9q7bNxXaeDi2NWIEBCw0vtx1CoMWY1LfT1f_QmjimUThSFuaCcQ_NXLXXnlA9tLE8021A1pQRzoLzBRb3bKZNizsm1h98BVtupUNupUPupKPzVw44c8J8ZKODtDqx8sHrjHxnninGtfqClkETWvwF1NMY7</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Arcay, Bernardino</creator><creator>Boveda, Carmen</creator><creator>Rey, Alberto</creator><creator>Castro, Alfonso</creator><creator>Sanjurjo, Pedro</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0470-290X</orcidid></search><sort><creationdate>20160101</creationdate><title>Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants</title><author>Arcay, Bernardino ; Boveda, Carmen ; Rey, Alberto ; Castro, Alfonso ; Sanjurjo, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-a57986e6f9f0d1b548255de5652ddb7b77ae2cbd6d77c826fc172136788cf5983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biomedical research</topic><topic>Classification</topic><topic>Clustering</topic><topic>CT imaging</topic><topic>Diagnostic imaging</topic><topic>Fuzzy Logic</topic><topic>Humans</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lungs</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Morphology</topic><topic>Mortality</topic><topic>Neighborhoods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Radiography, Thoracic - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Social aspects</topic><topic>Solitary Pulmonary Nodule - diagnostic imaging</topic><topic>Tomography, Spiral Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcay, Bernardino</creatorcontrib><creatorcontrib>Boveda, Carmen</creatorcontrib><creatorcontrib>Rey, Alberto</creatorcontrib><creatorcontrib>Castro, Alfonso</creatorcontrib><creatorcontrib>Sanjurjo, Pedro</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arcay, Bernardino</au><au>Boveda, Carmen</au><au>Rey, Alberto</au><au>Castro, Alfonso</au><au>Sanjurjo, Pedro</au><au>Suzuki, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium).</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27517049</pmid><doi>10.1155/2016/8058245</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0470-290X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2016-01, Vol.2016 (2016), p.1-15
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4967987
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Algorithms
Biomedical research
Classification
Clustering
CT imaging
Diagnostic imaging
Fuzzy Logic
Humans
Lung Neoplasms - diagnostic imaging
Lungs
Medical imaging
Medical imaging equipment
Morphology
Mortality
Neighborhoods
Pattern Recognition, Automated - methods
Radiography, Thoracic - methods
Reproducibility of Results
Sensitivity and Specificity
Social aspects
Solitary Pulmonary Nodule - diagnostic imaging
Tomography, Spiral Computed - methods
title Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Clustering%20Applied%20to%20ROI%20Detection%20in%20Helical%20Thoracic%20CT%20Scans%20with%20a%20New%20Proposal%20and%20Variants&rft.jtitle=BioMed%20research%20international&rft.au=Arcay,%20Bernardino&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2016/8058245&rft_dat=%3Cgale_pubme%3EA520715740%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-a57986e6f9f0d1b548255de5652ddb7b77ae2cbd6d77c826fc172136788cf5983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1807857714&rft_id=info:pmid/27517049&rft_galeid=A520715740&rfr_iscdi=true