Loading…

Synapse-Level Determination of Action Potential Duration by K+ Channel Clustering in Axons

In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites,...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2016-07, Vol.91 (2), p.370-383
Main Authors: Rowan, Matthew J.M., DelCanto, Gina, Yu, Jianqing J., Kamasawa, Naomi, Christie, Jason M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-4dedf8dc0695f9b5a5e08ac79ae10553241f7ae4d47957fb3ad1c90669b1f4b23
cites cdi_FETCH-LOGICAL-c557t-4dedf8dc0695f9b5a5e08ac79ae10553241f7ae4d47957fb3ad1c90669b1f4b23
container_end_page 383
container_issue 2
container_start_page 370
container_title Neuron (Cambridge, Mass.)
container_volume 91
creator Rowan, Matthew J.M.
DelCanto, Gina
Yu, Jianqing J.
Kamasawa, Naomi
Christie, Jason M.
description In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites, even within the same axon branch. The varicose geometry of SC boutons alone does not impose differences in spike duration. Rather, axonal patching revealed heterogeneous peak conductance densities of currents mediated mainly by fast-activating Kv3-type potassium channels, with clustered hotspots at boutons and restricted expression at adjoining shafts. Blockade of Kv channels at individual boutons indicates that currents immediately local to a release site direct spike repolarization at that location. Thus, the clustered arrangement and variable expression density of Kv3 channels at boutons are key determinants underlying compartmentalized control of AP width in a near synapse-by-synapse manner, multiplying the signaling capacity of these structures. •Spike duration varies between presynaptic boutons within an individual SC axon•The varicose geometry of presynaptic boutons does not alter spike duration•Fast-activating K+ channels are clustered at boutons and restricted from shafts•AP duration is determined by Kv3 channels immediately local to an individual bouton Rowan et al. find that APs are not uniformly represented across the axon arbor of SCs. Rather, spike duration is subject to local variation, determined at individual release sites, by clustering of fast-activating K+ channels, thus contributing to release heterogeneity.
doi_str_mv 10.1016/j.neuron.2016.05.035
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4969170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731630246X</els_id><sourcerecordid>4131994881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-4dedf8dc0695f9b5a5e08ac79ae10553241f7ae4d47957fb3ad1c90669b1f4b23</originalsourceid><addsrcrecordid>eNp9kV1v0zAUhi0EYt3gHyAUiRukKcFO_BHfIFWBbWiVQAJuuLEc52RzldqdnVT0389duwK74Mof53lfn-MXoTcEFwQT_mFZOJiCd0WZTgVmBa7YMzQjWIqcEimfoxmuJc95KaoTdBrjEmNCmSQv0Um6opyV9Qz9-r51eh0hX8AGhuwTjBBW1unRepf5Ppubh903P4IbrU7EFPbFdptdn2fNrXYuCZthiklq3U1mXTb_7V18hV70eojw-rCeoZ8Xn380V_ni6-WXZr7IDWNizGkHXV93BnPJetkyzQDX2gipgWDGqpKSXmigHRWSib6tdEeMxJzLlvS0Lasz9HHvu57aFXQmNRr0oNbBrnTYKq-t-rfi7K268RtFJZdE4GTw_mAQ_N0EcVQrGw0Mg3bgp6hIjetK1Izv0HdP0KWfgkvj7SjBSUU4TxTdUyb4GAP0x2YIVrvw1FLtw1O78BRmKoWXZG__HuQoekzrz6SQvnNjIahoLDgDnQ1gRtV5-_8X7gGFWK4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807613166</pqid></control><display><type>article</type><title>Synapse-Level Determination of Action Potential Duration by K+ Channel Clustering in Axons</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Rowan, Matthew J.M. ; DelCanto, Gina ; Yu, Jianqing J. ; Kamasawa, Naomi ; Christie, Jason M.</creator><creatorcontrib>Rowan, Matthew J.M. ; DelCanto, Gina ; Yu, Jianqing J. ; Kamasawa, Naomi ; Christie, Jason M.</creatorcontrib><description>In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites, even within the same axon branch. The varicose geometry of SC boutons alone does not impose differences in spike duration. Rather, axonal patching revealed heterogeneous peak conductance densities of currents mediated mainly by fast-activating Kv3-type potassium channels, with clustered hotspots at boutons and restricted expression at adjoining shafts. Blockade of Kv channels at individual boutons indicates that currents immediately local to a release site direct spike repolarization at that location. Thus, the clustered arrangement and variable expression density of Kv3 channels at boutons are key determinants underlying compartmentalized control of AP width in a near synapse-by-synapse manner, multiplying the signaling capacity of these structures. •Spike duration varies between presynaptic boutons within an individual SC axon•The varicose geometry of presynaptic boutons does not alter spike duration•Fast-activating K+ channels are clustered at boutons and restricted from shafts•AP duration is determined by Kv3 channels immediately local to an individual bouton Rowan et al. find that APs are not uniformly represented across the axon arbor of SCs. Rather, spike duration is subject to local variation, determined at individual release sites, by clustering of fast-activating K+ channels, thus contributing to release heterogeneity.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2016.05.035</identifier><identifier>PMID: 27346528</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Animals ; Axons - physiology ; Cerebellum - physiology ; Colleges &amp; universities ; Interneurons - physiology ; Lasers ; Mice, Inbred C57BL ; Microscopy ; Morphology ; Neurosciences ; Patch-Clamp Techniques - methods ; Plasmids ; Potassium Channels - physiology ; Presynaptic Terminals - physiology ; Rodents ; Simulation ; Synapses - physiology ; Synaptic Transmission - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2016-07, Vol.91 (2), p.370-383</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 20, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-4dedf8dc0695f9b5a5e08ac79ae10553241f7ae4d47957fb3ad1c90669b1f4b23</citedby><cites>FETCH-LOGICAL-c557t-4dedf8dc0695f9b5a5e08ac79ae10553241f7ae4d47957fb3ad1c90669b1f4b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27346528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowan, Matthew J.M.</creatorcontrib><creatorcontrib>DelCanto, Gina</creatorcontrib><creatorcontrib>Yu, Jianqing J.</creatorcontrib><creatorcontrib>Kamasawa, Naomi</creatorcontrib><creatorcontrib>Christie, Jason M.</creatorcontrib><title>Synapse-Level Determination of Action Potential Duration by K+ Channel Clustering in Axons</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites, even within the same axon branch. The varicose geometry of SC boutons alone does not impose differences in spike duration. Rather, axonal patching revealed heterogeneous peak conductance densities of currents mediated mainly by fast-activating Kv3-type potassium channels, with clustered hotspots at boutons and restricted expression at adjoining shafts. Blockade of Kv channels at individual boutons indicates that currents immediately local to a release site direct spike repolarization at that location. Thus, the clustered arrangement and variable expression density of Kv3 channels at boutons are key determinants underlying compartmentalized control of AP width in a near synapse-by-synapse manner, multiplying the signaling capacity of these structures. •Spike duration varies between presynaptic boutons within an individual SC axon•The varicose geometry of presynaptic boutons does not alter spike duration•Fast-activating K+ channels are clustered at boutons and restricted from shafts•AP duration is determined by Kv3 channels immediately local to an individual bouton Rowan et al. find that APs are not uniformly represented across the axon arbor of SCs. Rather, spike duration is subject to local variation, determined at individual release sites, by clustering of fast-activating K+ channels, thus contributing to release heterogeneity.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Cerebellum - physiology</subject><subject>Colleges &amp; universities</subject><subject>Interneurons - physiology</subject><subject>Lasers</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Neurosciences</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Plasmids</subject><subject>Potassium Channels - physiology</subject><subject>Presynaptic Terminals - physiology</subject><subject>Rodents</subject><subject>Simulation</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kV1v0zAUhi0EYt3gHyAUiRukKcFO_BHfIFWBbWiVQAJuuLEc52RzldqdnVT0389duwK74Mof53lfn-MXoTcEFwQT_mFZOJiCd0WZTgVmBa7YMzQjWIqcEimfoxmuJc95KaoTdBrjEmNCmSQv0Um6opyV9Qz9-r51eh0hX8AGhuwTjBBW1unRepf5Ppubh903P4IbrU7EFPbFdptdn2fNrXYuCZthiklq3U1mXTb_7V18hV70eojw-rCeoZ8Xn380V_ni6-WXZr7IDWNizGkHXV93BnPJetkyzQDX2gipgWDGqpKSXmigHRWSib6tdEeMxJzLlvS0Lasz9HHvu57aFXQmNRr0oNbBrnTYKq-t-rfi7K268RtFJZdE4GTw_mAQ_N0EcVQrGw0Mg3bgp6hIjetK1Izv0HdP0KWfgkvj7SjBSUU4TxTdUyb4GAP0x2YIVrvw1FLtw1O78BRmKoWXZG__HuQoekzrz6SQvnNjIahoLDgDnQ1gRtV5-_8X7gGFWK4Q</recordid><startdate>20160720</startdate><enddate>20160720</enddate><creator>Rowan, Matthew J.M.</creator><creator>DelCanto, Gina</creator><creator>Yu, Jianqing J.</creator><creator>Kamasawa, Naomi</creator><creator>Christie, Jason M.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160720</creationdate><title>Synapse-Level Determination of Action Potential Duration by K+ Channel Clustering in Axons</title><author>Rowan, Matthew J.M. ; DelCanto, Gina ; Yu, Jianqing J. ; Kamasawa, Naomi ; Christie, Jason M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-4dedf8dc0695f9b5a5e08ac79ae10553241f7ae4d47957fb3ad1c90669b1f4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Cerebellum - physiology</topic><topic>Colleges &amp; universities</topic><topic>Interneurons - physiology</topic><topic>Lasers</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Neurosciences</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Plasmids</topic><topic>Potassium Channels - physiology</topic><topic>Presynaptic Terminals - physiology</topic><topic>Rodents</topic><topic>Simulation</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowan, Matthew J.M.</creatorcontrib><creatorcontrib>DelCanto, Gina</creatorcontrib><creatorcontrib>Yu, Jianqing J.</creatorcontrib><creatorcontrib>Kamasawa, Naomi</creatorcontrib><creatorcontrib>Christie, Jason M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowan, Matthew J.M.</au><au>DelCanto, Gina</au><au>Yu, Jianqing J.</au><au>Kamasawa, Naomi</au><au>Christie, Jason M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synapse-Level Determination of Action Potential Duration by K+ Channel Clustering in Axons</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2016-07-20</date><risdate>2016</risdate><volume>91</volume><issue>2</issue><spage>370</spage><epage>383</epage><pages>370-383</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites, even within the same axon branch. The varicose geometry of SC boutons alone does not impose differences in spike duration. Rather, axonal patching revealed heterogeneous peak conductance densities of currents mediated mainly by fast-activating Kv3-type potassium channels, with clustered hotspots at boutons and restricted expression at adjoining shafts. Blockade of Kv channels at individual boutons indicates that currents immediately local to a release site direct spike repolarization at that location. Thus, the clustered arrangement and variable expression density of Kv3 channels at boutons are key determinants underlying compartmentalized control of AP width in a near synapse-by-synapse manner, multiplying the signaling capacity of these structures. •Spike duration varies between presynaptic boutons within an individual SC axon•The varicose geometry of presynaptic boutons does not alter spike duration•Fast-activating K+ channels are clustered at boutons and restricted from shafts•AP duration is determined by Kv3 channels immediately local to an individual bouton Rowan et al. find that APs are not uniformly represented across the axon arbor of SCs. Rather, spike duration is subject to local variation, determined at individual release sites, by clustering of fast-activating K+ channels, thus contributing to release heterogeneity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27346528</pmid><doi>10.1016/j.neuron.2016.05.035</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2016-07, Vol.91 (2), p.370-383
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4969170
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Action Potentials - physiology
Animals
Axons - physiology
Cerebellum - physiology
Colleges & universities
Interneurons - physiology
Lasers
Mice, Inbred C57BL
Microscopy
Morphology
Neurosciences
Patch-Clamp Techniques - methods
Plasmids
Potassium Channels - physiology
Presynaptic Terminals - physiology
Rodents
Simulation
Synapses - physiology
Synaptic Transmission - physiology
title Synapse-Level Determination of Action Potential Duration by K+ Channel Clustering in Axons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synapse-Level%20Determination%20of%20Action%20Potential%20Duration%20by%20K+%20Channel%20Clustering%20in%20Axons&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Rowan,%20Matthew%20J.M.&rft.date=2016-07-20&rft.volume=91&rft.issue=2&rft.spage=370&rft.epage=383&rft.pages=370-383&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2016.05.035&rft_dat=%3Cproquest_pubme%3E4131994881%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-4dedf8dc0695f9b5a5e08ac79ae10553241f7ae4d47957fb3ad1c90669b1f4b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1807613166&rft_id=info:pmid/27346528&rfr_iscdi=true