Loading…

Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach

Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates...

Full description

Saved in:
Bibliographic Details
Published in:Proteomics (Weinheim) 2015-08, Vol.15 (16), p.2733-2745
Main Authors: Ulasi, Gloria N., Creese, Andrew J., Hui, Sam Xin, Penn, Charles W., Cooper, Helen J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793
cites cdi_FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793
container_end_page 2745
container_issue 16
container_start_page 2733
container_title Proteomics (Weinheim)
container_volume 15
creator Ulasi, Gloria N.
Creese, Andrew J.
Hui, Sam Xin
Penn, Charles W.
Cooper, Helen J.
description Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs.
doi_str_mv 10.1002/pmic.201400533
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4975691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035652146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793</originalsourceid><addsrcrecordid>eNqNksGP1CAUxhujcdfVq0dD4sVLRyh9bfFgsja6rhlnPazxSCilM4xQKrSr9T_xv5Vm1ol60RMP-N6Pj5cvSR4TvCIYZ88Hq-UqwyTHGCi9k5ySgkDKqoLcPdZAT5IHIewxJmXFyvvJSQZVlWclnCY_amcHr3aqD_pGISuGQfdb5Dp0lW7NLF2YjRi165HuUWfEVhmzVN5ZVAs7zMY1Qo7Ko73aT71GhJCieoHOkZ3MqFX_fbYKtbrrlFf9qIVBC8y6Rhs9zvHBEFAYlBwjUY1-RtGBd0LuHib3OmGCenS7niUf37y-rt-m66uLy_p8nUqgQFNgTQWCQpuxtsGl6Nq26VhWQIFbaFiXy3hSFaBiJQQRkAvGZAVQCSm7ktGz5OWBO0yNVa2MLr0wfPDaCj9zJzT_86bXO751NzxnJRSMRMCzW4B3XyYVRm51kHFOolduCpyUmJEyZ7j4H2l0Ht0vtp7-Jd27yfdxEjzDFArISL4AVweV9C4Er7qjb4L5EhC-BIQfAxIbnvz-26P8VyKiAA6Cr9qo-R84_uH9ZU3idgGnhz4dRvXt2Cf8Z16UtAT-aXPBN5Rt1tfkHX9FfwLxGtp-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035652146</pqid></control><display><type>article</type><title>Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ulasi, Gloria N. ; Creese, Andrew J. ; Hui, Sam Xin ; Penn, Charles W. ; Cooper, Helen J.</creator><creatorcontrib>Ulasi, Gloria N. ; Creese, Andrew J. ; Hui, Sam Xin ; Penn, Charles W. ; Cooper, Helen J.</creatorcontrib><description>Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201400533</identifier><identifier>PMID: 25884275</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Bottom up Investigations ; Campylobacter ; Campylobacter jejuni ; Campylobacter jejuni - chemistry ; Campylobacter jejuni 11168 ; Chromatography, Liquid ; Endopeptidase K ; Endopeptidase K - metabolism ; Flagellin ; Flagellin - analysis ; Flagellin - chemistry ; Flagellin - metabolism ; Flagellin A ; Gastroenteritis ; Glycan ; Glycopeptides ; Glycoproteomics ; Glycosylation ; Heterogeneity ; Ionic mobility ; Ions ; LC FAIMS MS/MS / Proteinase K ; Legionaminic acid ; Mapping ; Mass spectrometry ; Mass spectroscopy ; Mobility ; Molecular chains ; Natural environment ; Peptide Fragments - analysis ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; Peptide Mapping ; Peptides ; Polysaccharides ; Proteinase ; Proteolysis ; Proteomics ; Proteomics - methods ; Scientific imaging ; Spectroscopy ; Tandem Mass Spectrometry - methods ; Trypsin ; Trypsin - metabolism ; Virulence</subject><ispartof>Proteomics (Weinheim), 2015-08, Vol.15 (16), p.2733-2745</ispartof><rights>2015 The Authors. PROTEOMICS published by Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793</citedby><cites>FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25884275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ulasi, Gloria N.</creatorcontrib><creatorcontrib>Creese, Andrew J.</creatorcontrib><creatorcontrib>Hui, Sam Xin</creatorcontrib><creatorcontrib>Penn, Charles W.</creatorcontrib><creatorcontrib>Cooper, Helen J.</creatorcontrib><title>Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs.</description><subject>Bottom up Investigations</subject><subject>Campylobacter</subject><subject>Campylobacter jejuni</subject><subject>Campylobacter jejuni - chemistry</subject><subject>Campylobacter jejuni 11168</subject><subject>Chromatography, Liquid</subject><subject>Endopeptidase K</subject><subject>Endopeptidase K - metabolism</subject><subject>Flagellin</subject><subject>Flagellin - analysis</subject><subject>Flagellin - chemistry</subject><subject>Flagellin - metabolism</subject><subject>Flagellin A</subject><subject>Gastroenteritis</subject><subject>Glycan</subject><subject>Glycopeptides</subject><subject>Glycoproteomics</subject><subject>Glycosylation</subject><subject>Heterogeneity</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>LC FAIMS MS/MS / Proteinase K</subject><subject>Legionaminic acid</subject><subject>Mapping</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mobility</subject><subject>Molecular chains</subject><subject>Natural environment</subject><subject>Peptide Fragments - analysis</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Mapping</subject><subject>Peptides</subject><subject>Polysaccharides</subject><subject>Proteinase</subject><subject>Proteolysis</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Trypsin</subject><subject>Trypsin - metabolism</subject><subject>Virulence</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNksGP1CAUxhujcdfVq0dD4sVLRyh9bfFgsja6rhlnPazxSCilM4xQKrSr9T_xv5Vm1ol60RMP-N6Pj5cvSR4TvCIYZ88Hq-UqwyTHGCi9k5ySgkDKqoLcPdZAT5IHIewxJmXFyvvJSQZVlWclnCY_amcHr3aqD_pGISuGQfdb5Dp0lW7NLF2YjRi165HuUWfEVhmzVN5ZVAs7zMY1Qo7Ko73aT71GhJCieoHOkZ3MqFX_fbYKtbrrlFf9qIVBC8y6Rhs9zvHBEFAYlBwjUY1-RtGBd0LuHib3OmGCenS7niUf37y-rt-m66uLy_p8nUqgQFNgTQWCQpuxtsGl6Nq26VhWQIFbaFiXy3hSFaBiJQQRkAvGZAVQCSm7ktGz5OWBO0yNVa2MLr0wfPDaCj9zJzT_86bXO751NzxnJRSMRMCzW4B3XyYVRm51kHFOolduCpyUmJEyZ7j4H2l0Ht0vtp7-Jd27yfdxEjzDFArISL4AVweV9C4Er7qjb4L5EhC-BIQfAxIbnvz-26P8VyKiAA6Cr9qo-R84_uH9ZU3idgGnhz4dRvXt2Cf8Z16UtAT-aXPBN5Rt1tfkHX9FfwLxGtp-</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Ulasi, Gloria N.</creator><creator>Creese, Andrew J.</creator><creator>Hui, Sam Xin</creator><creator>Penn, Charles W.</creator><creator>Cooper, Helen J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>201508</creationdate><title>Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach</title><author>Ulasi, Gloria N. ; Creese, Andrew J. ; Hui, Sam Xin ; Penn, Charles W. ; Cooper, Helen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bottom up Investigations</topic><topic>Campylobacter</topic><topic>Campylobacter jejuni</topic><topic>Campylobacter jejuni - chemistry</topic><topic>Campylobacter jejuni 11168</topic><topic>Chromatography, Liquid</topic><topic>Endopeptidase K</topic><topic>Endopeptidase K - metabolism</topic><topic>Flagellin</topic><topic>Flagellin - analysis</topic><topic>Flagellin - chemistry</topic><topic>Flagellin - metabolism</topic><topic>Flagellin A</topic><topic>Gastroenteritis</topic><topic>Glycan</topic><topic>Glycopeptides</topic><topic>Glycoproteomics</topic><topic>Glycosylation</topic><topic>Heterogeneity</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>LC FAIMS MS/MS / Proteinase K</topic><topic>Legionaminic acid</topic><topic>Mapping</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mobility</topic><topic>Molecular chains</topic><topic>Natural environment</topic><topic>Peptide Fragments - analysis</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Mapping</topic><topic>Peptides</topic><topic>Polysaccharides</topic><topic>Proteinase</topic><topic>Proteolysis</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Trypsin</topic><topic>Trypsin - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulasi, Gloria N.</creatorcontrib><creatorcontrib>Creese, Andrew J.</creatorcontrib><creatorcontrib>Hui, Sam Xin</creatorcontrib><creatorcontrib>Penn, Charles W.</creatorcontrib><creatorcontrib>Cooper, Helen J.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Titles (Open access)</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulasi, Gloria N.</au><au>Creese, Andrew J.</au><au>Hui, Sam Xin</au><au>Penn, Charles W.</au><au>Cooper, Helen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2015-08</date><risdate>2015</risdate><volume>15</volume><issue>16</issue><spage>2733</spage><epage>2745</epage><pages>2733-2745</pages><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25884275</pmid><doi>10.1002/pmic.201400533</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-9853
ispartof Proteomics (Weinheim), 2015-08, Vol.15 (16), p.2733-2745
issn 1615-9853
1615-9861
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4975691
source Wiley-Blackwell Read & Publish Collection
subjects Bottom up Investigations
Campylobacter
Campylobacter jejuni
Campylobacter jejuni - chemistry
Campylobacter jejuni 11168
Chromatography, Liquid
Endopeptidase K
Endopeptidase K - metabolism
Flagellin
Flagellin - analysis
Flagellin - chemistry
Flagellin - metabolism
Flagellin A
Gastroenteritis
Glycan
Glycopeptides
Glycoproteomics
Glycosylation
Heterogeneity
Ionic mobility
Ions
LC FAIMS MS/MS / Proteinase K
Legionaminic acid
Mapping
Mass spectrometry
Mass spectroscopy
Mobility
Molecular chains
Natural environment
Peptide Fragments - analysis
Peptide Fragments - chemistry
Peptide Fragments - metabolism
Peptide Mapping
Peptides
Polysaccharides
Proteinase
Proteolysis
Proteomics
Proteomics - methods
Scientific imaging
Spectroscopy
Tandem Mass Spectrometry - methods
Trypsin
Trypsin - metabolism
Virulence
title Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20mapping%20of%20O-glycosylation%20in%20flagellin%20from%20Campylobacter%20jejuni%2011168:%20A%20multienzyme%20differential%20ion%20mobility%20mass%20spectrometry%20approach&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Ulasi,%20Gloria%20N.&rft.date=2015-08&rft.volume=15&rft.issue=16&rft.spage=2733&rft.epage=2745&rft.pages=2733-2745&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201400533&rft_dat=%3Cproquest_pubme%3E2035652146%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035652146&rft_id=info:pmid/25884275&rfr_iscdi=true