Loading…
Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach
Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates...
Saved in:
Published in: | Proteomics (Weinheim) 2015-08, Vol.15 (16), p.2733-2745 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793 |
---|---|
cites | cdi_FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793 |
container_end_page | 2745 |
container_issue | 16 |
container_start_page | 2733 |
container_title | Proteomics (Weinheim) |
container_volume | 15 |
creator | Ulasi, Gloria N. Creese, Andrew J. Hui, Sam Xin Penn, Charles W. Cooper, Helen J. |
description | Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs. |
doi_str_mv | 10.1002/pmic.201400533 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4975691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035652146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793</originalsourceid><addsrcrecordid>eNqNksGP1CAUxhujcdfVq0dD4sVLRyh9bfFgsja6rhlnPazxSCilM4xQKrSr9T_xv5Vm1ol60RMP-N6Pj5cvSR4TvCIYZ88Hq-UqwyTHGCi9k5ySgkDKqoLcPdZAT5IHIewxJmXFyvvJSQZVlWclnCY_amcHr3aqD_pGISuGQfdb5Dp0lW7NLF2YjRi165HuUWfEVhmzVN5ZVAs7zMY1Qo7Ko73aT71GhJCieoHOkZ3MqFX_fbYKtbrrlFf9qIVBC8y6Rhs9zvHBEFAYlBwjUY1-RtGBd0LuHib3OmGCenS7niUf37y-rt-m66uLy_p8nUqgQFNgTQWCQpuxtsGl6Nq26VhWQIFbaFiXy3hSFaBiJQQRkAvGZAVQCSm7ktGz5OWBO0yNVa2MLr0wfPDaCj9zJzT_86bXO751NzxnJRSMRMCzW4B3XyYVRm51kHFOolduCpyUmJEyZ7j4H2l0Ht0vtp7-Jd27yfdxEjzDFArISL4AVweV9C4Er7qjb4L5EhC-BIQfAxIbnvz-26P8VyKiAA6Cr9qo-R84_uH9ZU3idgGnhz4dRvXt2Cf8Z16UtAT-aXPBN5Rt1tfkHX9FfwLxGtp-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2035652146</pqid></control><display><type>article</type><title>Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ulasi, Gloria N. ; Creese, Andrew J. ; Hui, Sam Xin ; Penn, Charles W. ; Cooper, Helen J.</creator><creatorcontrib>Ulasi, Gloria N. ; Creese, Andrew J. ; Hui, Sam Xin ; Penn, Charles W. ; Cooper, Helen J.</creatorcontrib><description>Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201400533</identifier><identifier>PMID: 25884275</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Bottom up Investigations ; Campylobacter ; Campylobacter jejuni ; Campylobacter jejuni - chemistry ; Campylobacter jejuni 11168 ; Chromatography, Liquid ; Endopeptidase K ; Endopeptidase K - metabolism ; Flagellin ; Flagellin - analysis ; Flagellin - chemistry ; Flagellin - metabolism ; Flagellin A ; Gastroenteritis ; Glycan ; Glycopeptides ; Glycoproteomics ; Glycosylation ; Heterogeneity ; Ionic mobility ; Ions ; LC FAIMS MS/MS / Proteinase K ; Legionaminic acid ; Mapping ; Mass spectrometry ; Mass spectroscopy ; Mobility ; Molecular chains ; Natural environment ; Peptide Fragments - analysis ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; Peptide Mapping ; Peptides ; Polysaccharides ; Proteinase ; Proteolysis ; Proteomics ; Proteomics - methods ; Scientific imaging ; Spectroscopy ; Tandem Mass Spectrometry - methods ; Trypsin ; Trypsin - metabolism ; Virulence</subject><ispartof>Proteomics (Weinheim), 2015-08, Vol.15 (16), p.2733-2745</ispartof><rights>2015 The Authors. PROTEOMICS published by Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793</citedby><cites>FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25884275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ulasi, Gloria N.</creatorcontrib><creatorcontrib>Creese, Andrew J.</creatorcontrib><creatorcontrib>Hui, Sam Xin</creatorcontrib><creatorcontrib>Penn, Charles W.</creatorcontrib><creatorcontrib>Cooper, Helen J.</creatorcontrib><title>Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs.</description><subject>Bottom up Investigations</subject><subject>Campylobacter</subject><subject>Campylobacter jejuni</subject><subject>Campylobacter jejuni - chemistry</subject><subject>Campylobacter jejuni 11168</subject><subject>Chromatography, Liquid</subject><subject>Endopeptidase K</subject><subject>Endopeptidase K - metabolism</subject><subject>Flagellin</subject><subject>Flagellin - analysis</subject><subject>Flagellin - chemistry</subject><subject>Flagellin - metabolism</subject><subject>Flagellin A</subject><subject>Gastroenteritis</subject><subject>Glycan</subject><subject>Glycopeptides</subject><subject>Glycoproteomics</subject><subject>Glycosylation</subject><subject>Heterogeneity</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>LC FAIMS MS/MS / Proteinase K</subject><subject>Legionaminic acid</subject><subject>Mapping</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mobility</subject><subject>Molecular chains</subject><subject>Natural environment</subject><subject>Peptide Fragments - analysis</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Mapping</subject><subject>Peptides</subject><subject>Polysaccharides</subject><subject>Proteinase</subject><subject>Proteolysis</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Trypsin</subject><subject>Trypsin - metabolism</subject><subject>Virulence</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNksGP1CAUxhujcdfVq0dD4sVLRyh9bfFgsja6rhlnPazxSCilM4xQKrSr9T_xv5Vm1ol60RMP-N6Pj5cvSR4TvCIYZ88Hq-UqwyTHGCi9k5ySgkDKqoLcPdZAT5IHIewxJmXFyvvJSQZVlWclnCY_amcHr3aqD_pGISuGQfdb5Dp0lW7NLF2YjRi165HuUWfEVhmzVN5ZVAs7zMY1Qo7Ko73aT71GhJCieoHOkZ3MqFX_fbYKtbrrlFf9qIVBC8y6Rhs9zvHBEFAYlBwjUY1-RtGBd0LuHib3OmGCenS7niUf37y-rt-m66uLy_p8nUqgQFNgTQWCQpuxtsGl6Nq26VhWQIFbaFiXy3hSFaBiJQQRkAvGZAVQCSm7ktGz5OWBO0yNVa2MLr0wfPDaCj9zJzT_86bXO751NzxnJRSMRMCzW4B3XyYVRm51kHFOolduCpyUmJEyZ7j4H2l0Ht0vtp7-Jd27yfdxEjzDFArISL4AVweV9C4Er7qjb4L5EhC-BIQfAxIbnvz-26P8VyKiAA6Cr9qo-R84_uH9ZU3idgGnhz4dRvXt2Cf8Z16UtAT-aXPBN5Rt1tfkHX9FfwLxGtp-</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Ulasi, Gloria N.</creator><creator>Creese, Andrew J.</creator><creator>Hui, Sam Xin</creator><creator>Penn, Charles W.</creator><creator>Cooper, Helen J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>201508</creationdate><title>Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach</title><author>Ulasi, Gloria N. ; Creese, Andrew J. ; Hui, Sam Xin ; Penn, Charles W. ; Cooper, Helen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bottom up Investigations</topic><topic>Campylobacter</topic><topic>Campylobacter jejuni</topic><topic>Campylobacter jejuni - chemistry</topic><topic>Campylobacter jejuni 11168</topic><topic>Chromatography, Liquid</topic><topic>Endopeptidase K</topic><topic>Endopeptidase K - metabolism</topic><topic>Flagellin</topic><topic>Flagellin - analysis</topic><topic>Flagellin - chemistry</topic><topic>Flagellin - metabolism</topic><topic>Flagellin A</topic><topic>Gastroenteritis</topic><topic>Glycan</topic><topic>Glycopeptides</topic><topic>Glycoproteomics</topic><topic>Glycosylation</topic><topic>Heterogeneity</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>LC FAIMS MS/MS / Proteinase K</topic><topic>Legionaminic acid</topic><topic>Mapping</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mobility</topic><topic>Molecular chains</topic><topic>Natural environment</topic><topic>Peptide Fragments - analysis</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Mapping</topic><topic>Peptides</topic><topic>Polysaccharides</topic><topic>Proteinase</topic><topic>Proteolysis</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Trypsin</topic><topic>Trypsin - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulasi, Gloria N.</creatorcontrib><creatorcontrib>Creese, Andrew J.</creatorcontrib><creatorcontrib>Hui, Sam Xin</creatorcontrib><creatorcontrib>Penn, Charles W.</creatorcontrib><creatorcontrib>Cooper, Helen J.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Titles (Open access)</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulasi, Gloria N.</au><au>Creese, Andrew J.</au><au>Hui, Sam Xin</au><au>Penn, Charles W.</au><au>Cooper, Helen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2015-08</date><risdate>2015</risdate><volume>15</volume><issue>16</issue><spage>2733</spage><epage>2745</epage><pages>2733-2745</pages><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O‐glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom‐up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>25884275</pmid><doi>10.1002/pmic.201400533</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9853 |
ispartof | Proteomics (Weinheim), 2015-08, Vol.15 (16), p.2733-2745 |
issn | 1615-9853 1615-9861 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4975691 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bottom up Investigations Campylobacter Campylobacter jejuni Campylobacter jejuni - chemistry Campylobacter jejuni 11168 Chromatography, Liquid Endopeptidase K Endopeptidase K - metabolism Flagellin Flagellin - analysis Flagellin - chemistry Flagellin - metabolism Flagellin A Gastroenteritis Glycan Glycopeptides Glycoproteomics Glycosylation Heterogeneity Ionic mobility Ions LC FAIMS MS/MS / Proteinase K Legionaminic acid Mapping Mass spectrometry Mass spectroscopy Mobility Molecular chains Natural environment Peptide Fragments - analysis Peptide Fragments - chemistry Peptide Fragments - metabolism Peptide Mapping Peptides Polysaccharides Proteinase Proteolysis Proteomics Proteomics - methods Scientific imaging Spectroscopy Tandem Mass Spectrometry - methods Trypsin Trypsin - metabolism Virulence |
title | Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20mapping%20of%20O-glycosylation%20in%20flagellin%20from%20Campylobacter%20jejuni%2011168:%20A%20multienzyme%20differential%20ion%20mobility%20mass%20spectrometry%20approach&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Ulasi,%20Gloria%20N.&rft.date=2015-08&rft.volume=15&rft.issue=16&rft.spage=2733&rft.epage=2745&rft.pages=2733-2745&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201400533&rft_dat=%3Cproquest_pubme%3E2035652146%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5353-59b85a35d29db07afddbf926560d5b9f4cfdd865ef4caa1a54a99c8558accf793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2035652146&rft_id=info:pmid/25884275&rfr_iscdi=true |